Int J Stomatol ›› 2020, Vol. 47 ›› Issue (2): 189-195.doi: 10.7518/gjkq.2020021

• Original Articles • Previous Articles     Next Articles

Microtribological behaviour of human tooth enamel treated by gamma irradiation

Qing Ping1,Gao Shanshan2,Qian Linmao3,Yu Haiyang2()   

  1. 1. Dept. of Stomatology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    3. Traction Power State Key Laboratory, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2019-05-21 Revised:2019-11-22 Online:2020-03-01 Published:2020-03-12
  • Contact: Haiyang Yu E-mail:yhyang6812@scu.edu.cn

Abstract:

Objective This study aimed to understand the effect of gamma irradiation on the microstructure, composition and microfriction and wear properties of human tooth enamel. Methods Nanoscratch tests, surface profilometer and scanning electron microscope analysis were used to evaluate the friction behaviour of human tooth enamel slabs before and after gamma irradiation. X-ray diffraction and Fourier transform infrared spectroscopy were performed to analyse changes in crystallography and chemical composition induced by irradiation. Surface microhardness alteration was also evaluated. Results After irradiation, additional partial packing and delamination with high friction coefficient were observed in the enamel. The Knoop hardness number (KHN) of the enamel significantly decreased from (420±20) KHN before irradiation to (333±11) KHN (P<0.000 1) after irradiation. The crystallinity decreased from 82.42%±2.01% to 71.11%±2.62% (P<0.05). The crystal size increased from (24.35±1.00) nm before irradiation to (26.72±1.88) nm (P<0.05) after irradiation. The carbonate:mineral ratio increased from 0.034±0.005 to 0.052±0.010 (P<0.05). Conclusion Gamma irradiation decreased the wear resistance of enamel. Results should be considered when performing clinical restorations.

Key words: gamma irradiation, nano-scratch, enamel, microfriction and wear

CLC Number: 

  • R781.2

TrendMD: 

Fig 1

Scanning electron microscope pictures of the nanoscratch in the enamel slides before and after gamma irradiation under different loads"

Fig 2

The comparison of coefficient of friction between enamel slides before gamma irradiation and enamel slides after irradiation with variable load"

Tab 1

Variation of remnant depth and width of scrat-ches on the enamel slides before and after gamma irradiation with variable loads"

参数 载荷/mN 照射前 照射后 P
划痕深度/nm 20 25.1±2.3 29.3±5.8 0.23
40 79.1±7.1 98.1±11.3 0.03
60 177.8±10.1 224.8±4.5 0.000 1
划痕宽度/μm 20 2.7±0.3 2.8±0.2 0.51
40 3.6±0.3 3.7±0.3 0.68
60 4.6±0.7 5.1±0.1 0.40

Fig 3

X-ray diffraction patterns of enamel slides before and after gamma irradiation"

Fig 4

Fourier transform infrared spectrum of enamel slides before and after gamma irradiation"

Tab 2

The comparison of the crystallinity, crystal size and carbonate:mineral ratio value of enamel slides before and after gamma irradiation"

参数 照射前 照射后 P
结晶度/% 82.42±2.01 71.11±2.62 0.02
晶粒大小/nm 24.35±1.0 26.72±1.88 0.01
碳酸盐:矿物比值 0.034±0.005 0.052±0.01 0.02
[1] Torre LA, Bray F, Siegel RL , et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015,65(2):87-108.
[2] Reed R, Xu C, Liu Y , et al. Radiotherapy effect on nano-mechanical properties and chemical com-position of enamel and dentine[J]. Arch Oral Biol, 2015,60(5):690-697.
[3] Fränzel W, Gerlach R, Hein HJ , et al. Effect of tumor therapeutic irradiation on the mechanical properties of teeth tissue[J]. Z Med Phys, 2006,16(2):148-154.
[4] Soares CJ, Castro CG, Neiva NA , et al. Effect of gamma irradiation on ultimate tensile strength of enamel and dentin[J]. J Dent Res, 2010,89(2):159-164.
[5] Liang X, Zhang JY, Cheng IK , et al. Effect of high energy X-ray irradiation on the nano-mechanical properties of human enamel and dentine[J]. Braz Oral Res, 2016,30:S1806-S83242016000100209.
[6] Soares CJ, Neiva NA, Soares PB , et al. Effects of chlorhexidine and fluoride on irradiated enamel and dentin[J]. J Dent Res, 2011,90(5):659-664.
[7] Rashid UN, Shyamoli M, Arefuddin A . Evaluation of response to radiotherapy in early stage laryngeal carcinoma[J]. IOSR-JDMS, 2013,6:112-116.
[8] 陈宁, 果晶晶, 宫惠峰 . 纳米颗粒粒度测量方法进展[J]. 现代科学仪器, 2012(2):160-163.
Chen N, Guo JJ, Gong HF . The research progress of methods for characterizing nanoparticles[J]. Mod Sci Instruments, 2012(2):160-163.
[9] Huang SB, Gao SS, Cheng L , et al. Combined effects of nano-hydroxyapatite and Galla chinensis on re-mineralisation of initial enamel lesion in vitro[J]. J Dent, 2010,38(10):811-819.
[10] Sun LL, Liang SS, Sa Y , et al. Surface alteration of human tooth enamel subjected to acidic and neutral 30% hydrogen peroxide[J]. J Dent, 2011,39(10):686-692.
[11] 郑宝敏, 孙艳 . 放射性龋齿相关因素研究[J]. 国外医学(临床放射学分册), 2006,29(4):280-284.
Zheng BM, Sun Y . Study on the related factors of radioactive caries[J]. Foreign Med Sci Clin Radiol Fascicle, 2006,29(4):280-284.
[12] Zheng J, Xiao F, Qian LM , et al. Erosion behavior of human tooth enamel in citric acid solution[J]. Tribol Int, 2009,42(11/12):1558-1564.
[13] Zheng J, Huang H, Shi MY , et al. In vitro study on the wear behaviour of human tooth enamel in citric acid solution[J]. Wear, 2011,271(9/10):2313-2321.
[14] Kielbassa AM, Hinkelbein W, Hellwig E , et al. Ra-diation-related damage to dentition[J]. Lancet Oncol, 2006,7(4):326-335.
[15] An BB, Wang RR, Zhang DS . Role of crystal arran-gement on the mechanical performance of enamel[J]. Acta Biomater, 2012,8(10):3784-3793.
[16] He LH, Swain MV . Influence of environment on the mechanical behaviour of mature human enamel[J]. Biomaterials, 2007,28(30):4512-4520.
[17] 牛林, 张辉, 董少杰 , 等. 多尺度下人牙釉质微观结构特性观察[J]. 山西医科大学学报, 2017,48(10):1075-1078.
Niu L, Zhang H, Dong SJ , et al. The microstructure properties of human enamel on the multi-scale[J]. J Shanxi Med Univ, 2017,48(10):1075-1078.
[18] Featherstone JD, Duncan JF, Cutress TW . Crystallo-graphic changes in human tooth enamel during in-vitro caries simulation[J]. Arch Oral Biol, 1978,23(5):405-413.
[19] Whittaker DK . Structural variations in the surface zone of human tooth enamel observed by scanning electron microscopy[J]. Arch Oral Biol, 1982,27(5):383-392.
[20] Cuy JL, Mann AB, Livi KJ , et al. Nanoindentation mapping of the mechanical properties of human molar tooth enamel[J]. Arch Oral Biol, 2002,47(4):281-291.
[21] Ghadimi E, Eimar H, Song J , et al. Regulated fracture in tooth enamel: a nanotechnological strategy from nature[J]. J Biomech, 2014,47(10):2444-2451.
[22] Eimar H, Ghadimi E, Marelli B , et al. Regulation of enamel hardness by its crystallographic dimensions[J]. Acta Biomater, 2012,8(9):3400-3410.
[23] Zheng J, Zhou ZR . Effect of age on the friction and wear behaviors of human teeth[J]. Tribol Int, 2006,39(3):266-273.
[24] 黄微雅, 钟梅, 李红 , 等. 人牙釉质组成和微结构的研究[J]. 科学技术与工程, 2008,8(14):3737-3740.
Huang WY, Zhong M, Li H , et al. Composition and microstructure analysis of human tooth enamel[J]. Sci Technol Eng, 2008,8(14):3737-3740.
[25] Panighi M, G’Sell C . Effect of the tooth microstru-cture on the shear bond strength of a dental com-posite[J]. J Biomed Mater Res, 1993,27(8):975-981.
[26] Gao SS, Huang SB, Qian LM , et al. Nanoscratch resistance of human tooth enamel treated by Nd:YAG laser irradiation[J]. Proc Inst Mech Eng Part J, 2010,224(16):529-537.
[27] Zheng SY, Zheng J, Gao SS , et al. Investigation on the microtribological behaviour of human tooth enamel by nanoscratch[J]. Wear, 2011,271(9/10):2290-2296.
[28] 岳松龄 . 龋病的组织病理学研究(续)龋病学研究百年回顾与展望之六[J]. 牙体牙髓牙周病学杂志, 2007,17(10):549-553.
Yue SL . Histopathology of dental caries. A review of caries research in last century[J]. Chin J Conserv Dent, 2007,17(10):549-553.
[29] Hegedüs C, Bistey T, Flóra-Nagy E , et al. An atomic force microscopy study on the effect of bleaching agents on enamel surface[J]. J Dent, 1999,27(7):509-515.
[30] 黄建文, 施心畅, 周京琳 , 等. 冷光美白对人恒牙表层釉质的影响[J]. 华西口腔医学杂志, 2010,28(4):361-363.
Huang JW, Shi XC, Zhou JL , et al. Effect of cold-light bleaching technique on human permanent teeth enamel surface[J]. West China J Stomatol, 2010,28(4):361-363.
[31] Angker L, Swain MV, Kilpatrick N . Micro-mechanical characterisation of the properties of primary tooth dentine[J]. J Dent, 2003,31(4):261-267.
[1] Wang Nannan,He Hong,Hua Fang. Research progress on the risk factors of orthodontically induced enamel demineralization [J]. Int J Stomatol, 2024, 51(1): 91-98.
[2] Wang Gang,Chen Zhuo.. Reduction of the risk of caries after interproximal enamel reduction [J]. Int J Stomatol, 2023, 50(4): 395-400.
[3] Meng Shuhuai,Luo Feng,Pei Xibo,Wan Qianbing. Research status on congenital syphilitic teeth [J]. Int J Stomatol, 2021, 48(4): 439-443.
[4] Yu Xiaohong,Liu Yu,Zeng Lian,Yang Yanling,Wang Zhou,Li Wei. Effects of enamel matrix derivative on proliferation and osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(1): 24-31.
[5] Yuxuan Yang,Haixia Zhang,Shuang Wang. Biological function of amelogenin during periodontal regeneration [J]. Inter J Stomatol, 2019, 46(2): 191-196.
[6] Mengmeng Mi,Haibin Xia,Min. Wang. Research progress on enamel matrix derivative in dental implantation [J]. Inter J Stomatol, 2018, 45(5): 522-526.
[7] Zhou Feng, Zhao Yuming. Research progress on molar-incisor hypomineralization [J]. Inter J Stomatol, 2016, 43(4): 456-461.
[8] Mao Xiaoquan, Meng Yajiao, Li Haifang. A case report of root-like enamel pearl [J]. Inter J Stomatol, 2016, 43(4): 406-408.
[9] Li Xinyi, Dong Wei. Enamel matrix protein in enhancing periodontal tissue regeneration [J]. Inter J Stomatol, 2015, 42(5): 600-605.
[10] He Kun1, Cheng Xiangrong2, Zhang Ximu3. Influence of enamel matrix protein on attachment and proliferation ability of dental follicle cells and periodontal ligament cells cultured on titanium [J]. Inter J Stomatol, 2014, 41(5): 536-540.
[11] Liu Xin1, Tan Lijun2, Li Tao1, Huang Shiyan1. Preliminary study on bovine enamel demineralization by different kinds of tea in vitro [J]. Inter J Stomatol, 2013, 40(6): 710-713.
[12] Wu Xingchen, Shu Chenbin.. The efficiency and application of pit and fissure sealant technique in clinical pediatric dentistry [J]. Inter J Stomatol, 2013, 40(4): 467-470.
[13] Wu Xiaoguang 1, Zhao Xu 2, Li Yi 1.. Effects of additives on enamel remineralization [J]. Inter J Stomatol, 2013, 40(4): 526-528.
[14] Li Hui1, Luo Xiaobo1, Wang Yijuan1, Jing Huan1, Chen Song2. Research progress on enamel demineralization during orthodontics [J]. Inter J Stomatol, 2013, 40(3): 412-415.
[15] Zou Huiru, Qin Zongchang, Zhang Lancheng. Components and their individual effects of emdogain [J]. Inter J Stomatol, 2013, 40(3): 355-358.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .