Int J Stomatol ›› 2020, Vol. 47 ›› Issue (1): 84-89.doi: 10.7518/gjkq.2020005

• Reviews • Previous Articles     Next Articles

Function of autophagy induced by mammalian target of rapamycin complex 1 in bone metabolism

Zhu Junjin1,Zhou Jiaqi1,Wu Yingying2,()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2019-05-12 Revised:2019-10-09 Online:2020-01-01 Published:2020-01-01
  • Contact: Yingying Wu E-mail:yywdentist@163.com
  • Supported by:
    This study was supported by Sichuan Science and Technology Innovation Seedling Project(2018RZ0088)

Abstract:

The mammalian target of rapamycin (mTOR) forms two functionally distinct multiprotein complexes, one of which is the mammalian target of rapamycin complex 1 (mTORC1). The mTORC1 plays a central role in regulating anabolic processes, including autophagy, which has recently captured extensive attention. Autophagy is an intracellular recycling pathway in which cellular components, including protein aggregates and organelles, are targeted to the lysosome for degradation. In recent years, an increasing amount of evidence shows that autophagy is mediated by mTORC1, which plays a critical role in bone metabolism. This review summarises the important role and mechanism of mTORC1-mediated autophagy in bone-related cells, especially osteoblasts and osteoclasts.

Key words: mammalian target of rapamycin complex, autophagy, osteoblast, osteoclast

CLC Number: 

  • Q251

TrendMD: 
[1] Potter CJ, Pedraza LG, Xu T . Akt regulates growth by directly phosphorylating Tsc2[J]. Nat Cell Biol, 2002,4(9):658-665.
[2] Ma L, Chen Z, Erdjument-Bromage H , et al. Pho-sphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis[J]. Cell, 2005,121(2):179-193.
[3] Laplante M , Sabatini DM. mTOR signaling in growth control and disease[J]. Cell, 2012,149(2):274-293.
[4] Martina JA, Chen Y, Gucek M , et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB[J]. Auto-phagy, 2012,8(6):903-914.
[5] Hua Y, Shen M ,McDonald C,et al.Autophagy dys-function in autoinflammatory diseases[J]. J Autoimmun, 2018,88:11-20.
[6] Rockel JS, Kapoor M . Autophagy: controlling cell fate in rheumatic diseases[J]. Nat Rev Rheumatol, 2016,12(9):517-531.
[7] Yang Z, Klionsky DJ . Mammalian autophagy: core molecular machinery and signaling regulation[J]. Curr Opin Cell Biol, 2010,22(2):124-131.
[8] Jung CH, Jun CB, Ro SH , et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the auto-phagy machinery[J]. Mol Biol Cell, 2009,20(7):1992-2003.
[9] Duran A, Amanchy R, Linares JF , et al. p62 is a key regulator of nutrient sensing in the mTORC1 path-way[J]. Mol Cell, 2011,44(1):134-146.
[10] Liu YQ, Hong ZL, Zhan LB , et al. Wedelolactone enhances osteoblastogenesis by regulating Wnt/β- atenin signaling pathway but suppresses osteoclasto-genesis by NF-κB/c-fos/NFATc1 pathway[J]. Sci Rep, 2016,6:32260.
[11] Chen Q, Shou P, Zheng C , et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts[J]. Cell Death Differ, 2016,23(7):1128-1139.
[12] Greco EA, Lenzi A, Migliaccio S . The obesity of bone[J]. Ther Adv Endocrinol Metab, 2015,6(6):273-286.
[13] Chen C, Akiyama K, Wang D , et al. mTOR inhibitiontion rescues osteopenia in mice with systemic sclerosis[J]. J Exp Med, 2015,212(1):73-91.
[14] Qi M, Zhang L, Ma Y , et al. Autophagy maintains the function of bone marrow mesenchymal stem cells to prevent estrogen deficiency-induced osteo-porosis[J]. Theranostics, 2017,7(18):4498-4516.
[15] Yin ZY, Yin J, Huo YF , et al. Rapamycin facilitates fracture healing through inducing cell autophagy and suppressing cell apoptosis in bone tissues[J]. Eur Rev Med Pharmacol Sci, 2017,21(21):4989-4998.
[16] Zhou Z, Shi G, Zheng X , et al. Autophagy activation facilitates mechanical stimulation-promoted osteo-blast differentiation and ameliorates hindlimb un-loading-induced bone loss[J]. Biochem Biophys Res Commun, 2018,498(3):667-673.
[17] Piemontese M, Onal M, Xiong J , et al. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage[J]. Sci Rep, 2016,6:24262.
[18] Liu F, Fang F, Yuan H , et al. Suppression of auto-phagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation[J]. J Bone Miner Res, 2013,28(11):2414-2430.
[19] Pantovic A, Krstic A, Janjetovic K , et al. Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic dif-ferentiation of human mesenchymal stem cells[J]. Bone, 2013,52(1):524-531.
[20] Liu Y, Kou X, Chen C , et al. Chronic high dose alcohol induces osteopenia via activation of mTOR signaling in bone marrow mesenchymal stem cells[J]. Stem Cells, 2016,34(8):2157-2168.
[21] Nollet M, Santucci-Darmanin S, Breuil V , et al. Autophagy in osteoblasts is involved in mineraliza-tion and bone homeostasis[J]. Autophagy, 2014,10(11):1965-1977.
[22] 余守和, 洪岸 . Runx2通过抑制细胞巨自噬以诱导C2C12细胞向成骨细胞分化[J]. 中国病理生理杂志, 2013,29(3):481-487.
Yu SH, Hong A . Runx2 promotes osteogenic diffe-rentiating C2C12 cells through inhibiting macroauto-phagy[J]. Chin J Pathophysiol, 2013,29(3):481-487.
[23] Fitter S, Matthews MP, Martin SK , et al. mTORC1 plays an important role in skeletal development by controlling preosteoblast differentiation[J]. Mol Cell Biol, 2017,37(7). doi: 10.1128/MCB.00668-16.
[24] Thoreen CC, Chantranupong L, Keys HR , et al. A unifying model for mTORC1-mediated regulation of mRNA translation[J]. Nature, 2012,485(7396):109-113.
[25] Sambandam Y, Townsend MT, Pierce JJ , et al. Mi-cro-gravity control of autophagy modulates osteo-clastogenesis[J]. Bone, 2014,61:125-131.
[26] Cai ZY, Yang B, Shi YX , et al. High glucose downre-gulates the effects of autophagy on osteoclastogenesis via the AMPK/mTOR/ULK1 pathway[J]. Biochem Biophys Res Commun, 2018,503(2):428-435.
[27] Xiu Y, Xu H, Zhao C , et al. Chloroquine reduces osteoclastogenesis in murine osteoporosis by pre-venting TRAF3 degradation[J]. J Clin Invest, 2014,124(1):297-310.
[28] Xu S, Zhang Y, Liu B , et al. Activation of mTORC1 in B lymphocytes promotes osteoclast formation via regulation of β-catenin and RANKL/OPG[J]. J Bone Miner Res, 2016,31(7):1320-1333.
[29] Tong X, Gu J, Song R , et al. Osteoprotegerin inhibit osteoclast differentiation and bone resorption by enhancing autophagy via AMPK/mTOR/p70S6K signaling pathway in vitro[J]. J Cell Biochem, 2018.doi: 10.1002/jcb.27468.
[30] Dai Q, Xie F, Han Y , et al. Inactivation of regulatory-associated protein of mTOR (raptor)/mammalian target of rapamycin complex 1 (mTORC1) signaling in osteoclasts increases bone mass by inhibiting osteoclast differentiation in mice[J]. J Biol Chem, 2017,292(1):196-204.
[31] Galson DL, Roodman GD . Pathobiology of Paget’s disease of bone[J]. J Bone Metab, 2014,21(2):85-98.
[32] McManus S, Bisson M, Chamberland R , et al. Auto-phagy and 3-phosphoinositide-dependent kinase 1 (PDK1)-related kinome in pagetic osteoclasts[J]. J Bone Miner Res, 2016,31(7):1334-1343.
[33] Plotkin LI, Speacht TL, Donahue HJ . Cx43 and me-chanotransduction in bone[J]. Curr Osteoporos Rep, 2015,13(2):67-72.
[34] Gao J, Cheng TS, Qin A , et al. Glucocorticoid impairs cell-cell communication by autophagy-me-diated degradation of connexin 43 in osteocytes[J]. Oncotarget, 2016,7(19):26966-26978.
[35] Onal M, Piemontese M, Xiong J , et al. Suppression of autophagy in osteocytes mimics skeletal aging[J]. J Biol Chem, 2013,288(24):17432-17440.
[36] Luo D, Ren H, Li T , et al. Rapamycin reduces severity of senile osteoporosis by activating osteocyte auto-phagy[J]. Osteoporos Int, 2016,27(3):1093-1101.
[1] Yu Yuelin,Kong Weidong. Research progress on the association between primary failure of tooth eruption and parathyroid hormone receptor 1 gene [J]. Int J Stomatol, 2023, 50(5): 573-580.
[2] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[3] Ye Yulin,Jiang Liting,Gao Yiming.. Role of autophagy in salivary glands of Sjögren’s syndrome [J]. Int J Stomatol, 2022, 49(5): 556-560.
[4] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[5] Li Guiping,Qin Xu,Zhu Guangxun.. Research progress on adenosine monophosphate-activated protein kinase in periodontal disease [J]. Int J Stomatol, 2022, 49(3): 343-348.
[6] An Ning,Li Jiao,Mei Zhidan. Research progress on the osteoprotegerin/receptor activator of nuclear factor-κB/receptor activator of nuclear factor-κB ligand signaling pathway of tooth eruption [J]. Int J Stomatol, 2022, 49(1): 116-120.
[7] Fang Lingli,Tan Xi,Ye Yusi,Huang Lan,He Yao. Experimental study on behavior changes of condylar chondrocytes in early stage of temporomandibular joint degeneration [J]. Int J Stomatol, 2021, 48(4): 417-425.
[8] Zhou Feng,Chen Ye,Chen Chen,Zhang Yining,Geng Ruiman,Liu Ji. Mechanism of sirtuin 1 in regulating periodontitis [J]. Int J Stomatol, 2021, 48(3): 341-346.
[9] Yin Yuanyuan,Ma Huayu,Li Xinyi,Xu Jingchen,Liu Ting,Chen Song,He Shushu. Expression of autophagy related genes in mice periodontal tissue during orthodontic tooth movement [J]. Int J Stomatol, 2020, 47(6): 627-634.
[10] Lü Hui,Wang Hua,Sun Wen. T helper cell 17 and periodontitis related osteoimmunology [J]. Int J Stomatol, 2020, 47(6): 661-668.
[11] Fu Shijin,Zeng Kan,Li Xin,Yang Jing,Wang Chenglin,Ye Ling. Preliminary study on osteoprotegerin/receptor activator of nuclear factor-κB ligand expression in mandible and femur on site selectivity of bone metastasis of lung cancer cells [J]. Int J Stomatol, 2020, 47(5): 538-546.
[12] Sun Jianwei,Lei Lihong,Tan Jingyi,Chen Lili. Regulation of osteoimmunology by MicroRNA 155 and research progress of its possible mechanism in periodontitis [J]. Int J Stomatol, 2020, 47(5): 607-615.
[13] Yang Peipei,Yang Yuchen,Zhang Qiang. Advances in the mechanism and effect of nicotine on alveolar osteoclasts [J]. Int J Stomatol, 2020, 47(5): 616-620.
[14] Ma Kai,Li Hao,Zhao Hongmei,Wang Yongliang,Liu Jie,Bai Na. Effects of inorganic bovine bone treated with low temperature argon-oxygen plasma on the adhesion, proliferation, and differentiation of MC3T3-E1 cells [J]. Int J Stomatol, 2020, 47(3): 278-285.
[15] Lu Kexin,Zhang Diya,Wu Yanmin. Research progress of protease-activated receptors on different types of cells in periodontal tissue [J]. Int J Stomatol, 2019, 46(6): 657-662.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .