Int J Stomatol ›› 2020, Vol. 47 ›› Issue (1): 76-83.doi: 10.7518/gjkq.2020004

• Reviews • Previous Articles     Next Articles

Research progress on microRNA-mediated mechanisms between periodontitis and atherosclerosis

Zhou Jieyu,Liu Lin,Wu Yafei,Zhao Lei()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2019-05-08 Revised:2019-09-12 Online:2020-01-01 Published:2020-01-01
  • Supported by:
    This study was supported by National Natural and Science Foundation of China(81771077);This study was supported by National Natural and Science Foundation of China(81970944);Fund of Science and Technology Department of Sichuan Province(2018SZ01161)

Abstract:

Periodontitis is a chronic inflammatory disease characterised by destruction of periodontal supporting tissue, which is mainly due to plaque biofilm and host immune response. Periodontal pathogen can invade the blood circulation system by transient bacteraemia and trigger the vascular inflammation, which can definitely increase the risk of cardiovascular disease. MicroRNA, a small molecule RNA discussed in this paper, can regulate gene expression in epigenetics and participate in the regulation of inflammation. This review focuses on the mechanism of how periodontal pathogens regulate immune inflammatory response by microRNA to mediate the generation and development of atherosclerosis, which can provide new ideas for the research on the linkages on molecular mechanism between periodontitis and atherosclerosis. Moreover, exploring the specific microRNA expression patterns related to atherosclerosis and periodontitis can serve as a theoretical basis for the diagnosis and treatment of cardiovascular diseases in the future.

Key words: periodontal pathogen, periodontitis, atherosclerosis, cardiovascular disease, microRNA

CLC Number: 

  • R781.4 +2

TrendMD: 
[1] Gibson FC 3rd, Yumoto H, Takahashi Y , et al. Innate immune signaling and Porphyromonas gingivalis-accelerated atherosclerosis[J]. J Dent Res, 2006,85(2):106-121.
[2] Fabian MR, Sonenberg N, Filipowicz W . Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010,79:351-379.
[3] Nahid MA, Pauley KM, Satoh M , et al. miR-146a is critical for endotoxin-induced tolerance: implication in innate immunity[J]. J Biol Chem, 2009,284(50):34590-34599.
[4] Alam MM ,O’Neill LA . MicroRNAs and the resolution phase of inflammation in macrophages[J]. Eur J Im-munol, 2011,41(9):2482-2485.
[5] Caescu CI, Guo X, Tesfa L , et al. Colony stimulating factor-1 receptor signaling networks inhibit mouse macrophage inflammatory responses by induction of microRNA-21[J]. Blood, 2015,125(8):e1-e13.
[6] Cheng Y, Du L, Jiao H , et al. Mmu-miR-27a-5p-dependent upregulation of MCPIP1 inhibits the in-flammatory response in LPS-induced RAW264.7 macrophage cells[J]. Biomed Res Int, 2015,2015:607692.
[7] Lai L, Song Y, Liu Y , et al. MicroRNA-92a nega-tively regulates Toll-like receptor (TLR)-triggered inflammatory response in macrophages by targeting MKK4 kinase[J]. J Biol Chem, 2013,288(11):7956-7967.
[8] Sun Y, Qin Z, Li Q , et al. MicroRNA-124 negatively regulates LPS-induced TNF-α production in mouse macrophages by decreasing protein stability[J]. Acta Pharmacol Sin, 2016,37(7):889-897.
[9] Fan G, Jiang X, Wu X , et al. Anti-inflammatory ac-tivity of tanshinone IIA in LPS-stimulated RAW264.7 macrophages via miRNAs and TLR4-NF-κB path-way[J]. Inflammation, 2016,39(1):375-384.
[10] Huang L, Ma Q, Li Y , et al. Inhibition of microRNA- 210 suppresses pro-inflammatory response and re-duces acute brain injury of ischemic stroke in mice[J]. Exp Neurol, 2018,300:41-50.
[11] Luan X, Zhou X, Trombetta-eSilva J, , et al. MicroRNAs and periodontal homeostasis[J]. J Dent Res, 2017,96(5):491-500.
[12] Lee YH, Na HS, Jeong SY , et al. Comparison of in-flammatory microRNA expression in healthy and periodontitis tissues[J]. Biocell, 2011,35(2):43-49.
[13] Xie YF, Shu R, Jiang SY , et al. Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues[J]. Int J Oral Sci, 2011,3(3):125-134.
[14] Stoecklin-Wasmer C, Guarnieri P, Celenti R , et al. MicroRNAs and their target genes in gingival tissues[J]. J Dent Res, 2012,91(10):934-940.
[15] Ogata Y, Matsui S, Kato A , et al. MicroRNA expre-ssion in inflamed and noninflamed gingival tissues from Japanese patients[J]. J Oral Sci, 2014,56(4):253-260.
[16] Venugopal P, Koshy T, Lavu V , et al. Differential expression of microRNAs let-7a, miR-125b, miR- 100, and miR-21 and interaction with NF-κB pathway genes in periodontitis pathogenesis[J]. J Cell Physiol, 2018,233(8):5877-5884.
[17] Amaral SA, Pereira TSF, Brito JAR , et al. Comparison of miRNA expression profiles in individuals with chronic or aggressive periodontitis[J]. Oral Dis, 2019,25(2):561-568.
[18] Motedayyen H, Ghotloo S, Saffari M , et al. Evalua-tion of microRNA-146a and its targets in gingival tissues of patients with chronic periodontitis[J]. J Periodontol, 2015,86(12):1380-1385.
[19] Radović N, Nikolić Jakoba N, Petrović N , et al. MicroRNA-146a and microRNA-155 as novel cre-vicular fluid biomarkers for periodontitis in nondia-betic and type 2 diabetic patients[J]. J Clin Periodon- tol, 2018,45(6):663-671.
[20] Yoneda T, Tomofuji T, Ekuni D , et al. Serum micro-RNAs and chronic periodontitis: a case-control study[J]. Arch Oral Biol, 2019,101:57-63.
[21] Tomofuji T, Yoneda T, Machida T , et al. MicroRNAs as serum biomarkers for periodontitis[J]. J Clin Pe-riodontol, 2016,43(5):418-425.
[22] Bagavad Gita J, George AV, Pavithra N , et al. Dysre-gulation of miR-146a by periodontal pathogens: a risk for acute coronary syndrome[J]. J Periodontol, 2019,90(7):756-765.
[23] Guo M, Mao X, Ji Q , et al. miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome[J]. Immunol Cell Biol, 2010,88(5):555-564.
[24] Nahid MA, Rivera M, Lucas A , et al. Polymicrobial infection with periodontal pathogens specifically enhances microRNA miR-146a in ApoE -/- mice during experimental periodontal disease [J]. Infect Immun, 2011,79(4):1597-1605.
[25] Xuan Y, Gao Y, Huang H , et al. Tanshinone IIA at-tenuates atherosclerosis in apolipoprotein E knockout mice infected with Porphyromonas gingivalis[J]. Inflammation, 2017,40(5):1631-1642.
[26] Jia R, Hashizume-Takizawa T, Du Y , et al. Aggregati-bacter actinomycetemcomitans induces Th17 cells in atherosclerotic lesions[J]. Pathog Dis, 2015,73(3). doi: 10.1093/femspd/ftu027.
[27] Hajishengallis G . Periodontitis: from microbial im-mune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015,15(1):30-44.
[28] Urbich C, Kuehbacher A, Dimmeler S . Role of microRNAs in vascular diseases, inflammation, and angiogenesis[J]. Cardiovasc Res, 2008,79(4):581-588.
[29] Renzi TA, Rubino M, Gornati L , et al. MiR-146b mediates endotoxin tolerance in human phagocytes[J]. Mediators Inflamm, 2015,2015:145305.
[30] Li X, Ji Z, Li S , et al. miR-146a-5p antagonized AGEs- and P.g-LPS-induced ABCA1 and ABCG1 dysregulation in macrophages via IRAK-1 downre-gulation[J]. Inflammation, 2015,38(5):1761-1768.
[31] Molteni M, Bosi A, Saturni V , et al. MiR-146a in-duction by cyanobacterial lipopolysaccharide anta-gonist (CyP) mediates endotoxin cross-tolerance[J]. Sci Rep, 2018,8(1):11367.
[32] Molteni M, Bosi A, Rossetti C . The effect of cyano-bacterial LPS antagonist (CyP) on cytokines and micro-RNA expression induced by Porphyromonas gingivalis LPS[J]. Toxins (Basel), 2018,10(7). doi: 10.3390/toxins10070290.
[33] Honda T, Takahashi N, Miyauchi S , et al. Porphyro-monas gingivalis lipopolysaccharide induces miR-146a without altering the production of inflammatory cytokines[J]. Biochem Biophys Res Commun, 2012,420(4):918-925.
[34] Tsai PC, Liao YC, Wang YS , et al. Serum microRNA- 21 and microRNA-221 as potential biomarkers for cerebrovascular disease[J]. J Vasc Res, 2013,50(4):346-354.
[35] Canfrán-Duque A, Rotllan N, Zhang X , et al. Macro-phage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis[J]. EMBO Mol Med, 2017,9(9):1244-1262.
[36] Ruan Q, Wang P, Wang T , et al. MicroRNA-21 re-gulates T-cell apoptosis by directly targeting the tumor suppressor gene Tipe2[J]. Cell Death Dis, 2014,5:e1095.
[37] Niu J, Shi Y, Tan G , et al. DNA damage induces NF-κB-dependent microRNA-21 up-regulation and promotes breast cancer cell invasion[J]. J Biol Chem, 2012,287(26):21783-21795.
[38] Shin VY, Jin H, Ng EK , et al. NF-κB targets miR-16 and miR-21 in gastric cancer: involvement of prosta-glandin E receptors[J]. Carcinogenesis, 2011,32(2):240-245.
[39] Das A, Ganesh K, Khanna S , et al. Engulfment of apoptotic cells by macrophages: a role of microRNA- 21 in the resolution of wound inflammation[J]. J Immunol, 2014,192(3):1120-1129.
[40] Ji R, Cheng Y, Yue J , et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation[J]. Circ Res, 2007,100(11):1579-1588.
[41] Perdiguero E, Sousa-Victor P, Ruiz-Bonilla V , et al. p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair[J]. J Cell Biol, 2011,195(2):307-322.
[42] Wu Z, Lu H, Sheng J , et al. Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2[J]. FEBS Lett, 2012,586(16):2459-2467.
[43] Xue X, Qiu Y, Yang HL . Immunoregulatory role of microRNA-21 in macrophages in response to Bacillus calmette-guerin infection involves modulation of the TLR4/MyD88 signaling pathway[J]. Cell Physiol Biochem, 2017,42(1):91-102.
[44] Zhou W, Su L, Duan X , et al. MicroRNA-21 down-regulates inflammation and inhibits periodontitis[J]. Mol Immunol, 2018,101:608-614.
[45] Yang X, Pan Y, Xu X , et al. Sialidase deficiency in Porphyromonas gingivalis increases IL-12 secretion in stimulated macrophages through regulation of CR3, lncRNA GAS5 and miR-21[J]. Front Cell Infect Mi-crobiol, 2018,8:100.
[46] Huck O, Al-Hashemi J, Poidevin L , et al. Identi-fication and characterization of microRNA differen-tially expressed in macrophages exposed to Por-phyromonas gingivalis infection[J]. Infect Immun, 2017,85(3). doi: 10.1128/IAI.00771-16.
[47] Na HS, Park MH, Song YR , et al. Elevated micro-RNA-128 in periodontitis mitigates tumor necrosis factor-α response via p38 signaling pathway in macrophages[J]. J Periodontol, 2016,87(9):e173-e182.
[48] Park MH, Park E, Kim HJ , et al. Porphyromonas gingivalis-induced miR-132 regulates TNFα expre-ssion in THP-1 derived macrophages[J]. Springer-Plus, 2016,5:761.
[49] Naqvi AR, Fordham JB, Khan A , et al. MicroRNAs responsive to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis LPS modulate ex-pression of genes regulating innate immunity in human macrophages[J]. Innate Immun, 2014,20(5):540-551.
[50] Fordham JB, Naqvi AR, Nares S. miR-24 regulates macrophage polarization and plasticity[J]. J Clin Cell Immunol, 2015,6:(5)pii: 362.
[51] Pessi T, Viiri LE, Raitoharju E , et al. Interleukin-6 and microRNA profiles induced by oral bacteria in human atheroma derived and healthy smooth muscle cells[J]. Springerplus, 2015,4:206.
[52] Laffont B, Rayner KJ . MicroRNAs in the pathobio-logy and therapy of atherosclerosis[J]. Can J Cardiol, 2017,33(3):313-324.
[1] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[2] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[3] Li Liheng,Wang Rui,Wang Xiaoming,Zhang Zhiyi,Zhang Xuan,An Feng,Wang Qin,Zhang Fan. Effects of circular RNA hsa_circ_0085576 on cell migration and invasion of oral squamous cell carcinoma by regulating the microRNA-498/B-cell-specific Moloney murine leukemia virus integration site 1 axis [J]. Int J Stomatol, 2024, 51(1): 60-67.
[4] Luo Xiaojie,Wang Dexu,Chen Xiaotao. Relationship between periodontitis and ferroptosis based on bioinformatics analysis [J]. Int J Stomatol, 2023, 50(6): 661-668.
[5] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[6] Hu Jia,Wang Xiuqing,Lu Guoying,Huang Xiaojing.. Regenerative endodontic procedures for permanent tooth with immature apices in adult patients [J]. Int J Stomatol, 2023, 50(6): 686-695.
[7] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[8] Xu Zhibo,Meng Xiuping.. Research progress on mechanism of Enterococcus faecalis escaping host immune defense [J]. Int J Stomatol, 2023, 50(5): 613-617.
[9] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[10] Liang Zhiying,Zhao Yuanxi,Zhu Jiani,Su Qin.. Retrospective analysis of clinical data of 288 cases of endodontic microsurgery on anterior teeth [J]. Int J Stomatol, 2023, 50(2): 166-171.
[11] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[12] Li Qiong,Yu Weixian. Research progress on resveratrol for the treatment of periodontitis and its bioavailability [J]. Int J Stomatol, 2023, 50(1): 25-31.
[13] Huang Weikun,Xu Qiuyan,Zhou Ting.. Role of baicalin and mechanisms through which baicalin attenuates oxidative stress injury induced by lipopolysaccharide on macrophages [J]. Int J Stomatol, 2022, 49(5): 521-528.
[14] Zhou Jianpeng,Xie Xudong,Zhao Lei,Wang Jun.. Research progress on the roles and mechanisms of T-helper 17 cells and interleukin-17 in periodontitis [J]. Int J Stomatol, 2022, 49(5): 586-592.
[15] Chen Huiyu,Bai Mingru,Ye Ling.. Progress in understanding the correlations between semaphorin 3A and common oral diseases [J]. Int J Stomatol, 2022, 49(5): 593-599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .