Int J Stomatol ›› 2019, Vol. 46 ›› Issue (6): 724-729.doi: 10.7518/gjkq.2019089

• Reviews • Previous Articles     Next Articles

Research progress of erythropoietin-producing hepatocyte kinase receptor and ephrin ligand in alveolar bone remodeling

Wang Linxuan1,Wang Qi1,Zhao Yun1,Mi Fanglin1,2()   

  1. 1. Dept. of Stomatology, North Sichuan Medical College, Nanchong 637000, China
    2. Dept. of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
  • Received:2019-01-05 Revised:2019-06-28 Online:2019-11-01 Published:2019-11-14
  • Contact: Fanglin Mi E-mail:mfl126@126.com
  • Supported by:
    This study was supported by Scientific Research Project of Sichuan Education Department(15ZA0210);Research and Development Fund Project of Nanchong(16YFZJ0123);Science and Technology Strategic Cooperation between City and School of Nanchong(NSMC2017- 0442)

Abstract:

The erythropoietin producing hepatocyte kinase receptor and ephrin ligand (ephrin/Eph) are new signal pathways associated with bone remodeling in addition to the receptor activator for nuclear factor-κB ligand/receptor activator for nuclear factor-κB/osteoprotegenin (RANKL/RANK/OPG). In alveolar bone remodeling, ephrin/Eph-related factors are not only related to the interaction between bone cells but also affected by periodontal ligament cells. The expression of related factors in the process of alveolar bone tissue remodeling is substantially different from that for normal bone tissue. This difference reveals the complexity and importance of ephrin/Eph-related factors in the regulation of bone remodeling. This study reviews the research progress on the interaction of the ephrin/Eph pathway between bone cells and periodontal ligament cells to participate in alveolar bone remodeling.

Key words: erythropoietin producing hepatocyte kinase receptor, erythropoietin producing hepatocyte kinase ligand, alveolar bone, bone remodeling, periodontal ligament

CLC Number: 

  • Q26

TrendMD: 
[1] Lisabeth EM, Falivelli G, Pasquale EB . Eph receptor signaling and ephrins[J]. Cold Spring Harb Perspect Biol, 2013,5(9):a009159.
[2] Pitulescu ME, Adams RH . Eph/ephrin molecules: a hub for signaling and endocytosis[J]. Genes Dev, 2010,24(22):2480-2492.
[3] Davy A, Soriano P . Ephrin signaling in vivo: look both ways[J]. Dev Dyn, 2005,232(1):1-10.
[4] Taylor H, Campbell J, Nobes CD . Ephs and ephrins[J]. Curr Biol, 2017,27(3):R90-R95.
[5] 吴梓齐, 杨涛源, 王景云 . 浅谈EphrinB2/ephB4在骨重建中的作用[J]. 中华老年口腔医学杂志, 2014,12(3):184-187.
Wu ZQ, Yang TY, Wang JY . The function of Eph-rinB2/ephB4 in bone reconstruction[J]. Chin J Geriatr Dent, 2014,12(3):184-187.
[6] 赵鹃, 毛英杰, 谷志远 . 骨吸收与骨形成耦联中Eph/ephrin信号转导的研究进展[J]. 生物化学与生物物理进展, 2009,36(9):1101-1105.
Zhao J, Mao YJ, Gu ZY . Progress in researches of Eph/ephrin signaling in coupling of bone resorption and bone formation[J]. Prog Biochem Biophys, 2009,36(9):1101-1105.
[7] Schaupp A, Sabet O, Dudanova I , et al. The com-position of EphB2 clusters determines the strength in the cellular repulsion response[J]. J Cell Biol, 2014,204(3):409-422.
[8] Hwang YS, Daar IO . A frog’s view of EphrinB signa-ling[J]. Genesis, 2017,55(1/2):1-9.
[9] Niethamer TK, Bush JO . Getting direction(s): the Eph/ephrin signaling system in cell positioning[J]. Dev Biol, 2019,447(1):42-57.
[10] Cayuso J, Dzementsei A, Fischer JC , et al. EphrinB1/EphB3b coordinate bidirectional epithelial-mesen-chymal interactions controlling liver morphogenesis and laterality[J]. Dev Cell, 2016,39(3):316-328.
[11] Gong JY, Körner R, Gaitanos L , et al. Exosomes mediate cell contact-independent ephrin-Eph signa-ling during axon guidance[J]. J Cell Biol, 2016,214(1):35-44.
[12] Dai DD, Huang Q, Nussinov R , et al. Promiscuous and specific recognition among ephrins and Eph receptors[J]. Biochim Biophys Acta, 2014,1844(10):1729-1740.
[13] Singh A, Winterbottom E, Daar IO . Eph/ephrin signaling in cell-cell and cell-substrate adhesion[J]. Front Biosci (Landmark Ed), 2012,17:473-497.
[14] Pegg CL, Cooper LT, Zhao J , et al. Glycoengineering of EphA4 Fc leads to a unique, long-acting and broad spectrum, Eph receptor therapeutic antagonist[J]. Sci Rep, 2017,7(1):6519.
[15] Li C, Shi C, Kim J , et al. Erythropoietin promotes bone formation through EphrinB2/EphB4 signaling[J]. J Dent Res, 2015,94(3):455-463.
[16] Sawamiphak S, Seidel S, Essmann CL , et al. Ephrin- B2 regulates VEGFR2 function in developmental and tumour angiogenesis[J]. Nature, 2010,465(7297):487-491.
[17] Liao CS, Cheng TF, Wang S , et al. Shear stress inhi-bits IL-17A-mediated induction of osteoclastogenesis via osteocyte pathways[J]. Bone, 2017,101:10-20.
[18] Xie H, Cui Z, Wang L , et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis[J]. Nat Med, 2014,20(11):1270-1278.
[19] Wang LM, Zhang J, Wang CW , et al. Low concentra-tions of TNF-α promote osteogenic differentiation via activation of the ephrinB2-EphB4 signalling pathway[J]. Cell Prolif, 2017,50(1):1-10.
[20] Benson MD, Opperman LA, Westerlund J , et al. Ephrin-B stimulation of calvarial bone formation[J]. Dev Dyn, 2012,241(12):1901-1910.
[21] Cheng SH, Kesavan C, Mohan S , et al. Transgenic overexpression of ephrin b1 in bone cells promotes bone formation and an anabolic response to mecha-nical loading in mice[J]. PLoS One, 2013,8(7):e69051.
[22] Takyar FM, Tonna S, Ho PAM , et al. EphrinB2/EphB4 inhibition in the osteoblast lineage modifies the anabolic response to parathyroid hormone[J]. J Bone Miner Res, 2013,28(4):912-925.
[23] Zhao C, Irie N, Takada Y , et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis[J]. Cell Metab, 2006,4(2):111-121.
[24] Shen LL, Zhang LX, Wang LM , et al. Disturbed expression of EphB4, but not EphrinB2, inhibited bone regeneration in an in vivo inflammatory micro-environment[J]. Mediators Inflamm, 2016,2016:6430407.
[25] Wu M, Ai WT, Chen L , et al. Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyper-glycemia-induced bone deterioration in mice[J]. Int J Mol Med, 2016,37(3):565-574.
[26] Tonna S, Takyar FM, Vrahnas C , et al. EphrinB2 signaling in osteoblasts promotes bone minerali-zation by preventing apoptosis[J]. FASEB J, 2014,28(10):4482-4496.
[27] Irie N, Takada Y, Watanabe Y , et al. Bidirectional signaling through ephrinA2-EphA2 enhances osteo-clastogenesis and suppresses osteoblastogenesis[J]. J Biol Chem, 2009,284(21):14637-14644.
[28] Gao AC, Wang XC, Yu HY , et al. Effect of Porphyro-monas gingivalis lipopolysaccharide (Pg-LPS) on the expression of EphA2 in osteoblasts and osteo-clasts[J]. In vitro Cell Dev Biol Anim, 2016,52(2):228-234.
[29] Zhang Y, Wang XC, Bao XF , et al. Effects of Por-phyromonas gingivalis lipopolysaccharide on osteo-blast-osteoclast bidirectional EphB4-EphrinB2 signaling[J]. Exp Ther Med, 2014,7(1):80-84.
[30] Yamada T, Yoshii T, Yasuda H , et al. Dexamethasone regulates EphA5, a potential inhibitory factor with osteogenic capability of human bone marrow stromal cells[J]. Stem Cells Int, 2016,2016:1301608.
[31] Diercke K, Kohl A, Lux CJ , et al. Strain-dependent up-regulation of ephrin-B2 protein in periodontal ligament fibroblasts contributes to osteogenesis during tooth movement[J]. J Biol Chem, 2011,286(43):37651-37664.
[32] Sen S, Diercke K, Zingler S , et al. Compression in-duces Ephrin-A2 in PDL fibroblasts via c-fos[J]. J Dent Res, 2015,94(3):464-472.
[33] Diercke K, Sen S, Kohl A , et al. Compression-de-pendent up-regulation of ephrin-A2 in PDL fibro-blasts attenuates osteogenesis[J]. J Dent Res, 2011,90(9):1108-1115.
[34] Hou JH, Chen YZ, Meng XP , et al. Compressive force regulates ephrinB2 and EphB4 in osteoblasts and osteoclasts contributing to alveolar bone resor-ption during experimental tooth movement[J]. Korean J Orthod, 2014,44(6):320-329.
[35] 杜沿林, 张辉, 孟蕾 , 等. 大鼠正畸牙移动过程中ephrinA2在牙周膜内的表达与分布[J]. 牙体牙髓牙周病学杂志, 2016,26(2):74-77, 120.
Du YL, Zhang H, Meng L , et al. EphrinA2 expre-ssion and distribution in periodontal ligament during orthodontic tooth movement in rats[J]. Chin J Conserv Dent, 2016,26(2):74-77, 120.
[36] Li M, Zhang C, Jin L , et al. Porphyromonas gin-givalis lipopolysaccharide regulates ephrin/Eph signalling in human periodontal ligament fibroblasts[J]. J Periodont Res, 2017,52(5):913-921.
[1] Yu Yuelin,Kong Weidong. Research progress on the association between primary failure of tooth eruption and parathyroid hormone receptor 1 gene [J]. Int J Stomatol, 2023, 50(5): 573-580.
[2] Liu Yi,Liu Yi.. Research progress on the regulation of bone remodeling by macrophage-derived exosomes [J]. Int J Stomatol, 2023, 50(1): 120-126.
[3] Yin Yijia,Yang Jinting,Shen Jianqi,Huang Lingyi,Jing Yan,Guan Qiuyue,Han Xianglong. Endothelial-cell-specific overexpression of Dickkopf 1 using Cadherin 5 promoter regulates osteogenesis in vivo [J]. Int J Stomatol, 2022, 49(6): 641-647.
[4] Zha Yunchen,Zhang Jiajia,Kong Weidong.. Research progress on the etiology of primary failure of eruption [J]. Int J Stomatol, 2022, 49(4): 386-391.
[5] Jiang Duan,Shen Daonan,Zhao Lei,Wu Yafei. Research progress on the relationship between new anti-inflammatory factor developmental endothelial locus-1 and periodontitis [J]. Int J Stomatol, 2022, 49(2): 244-248.
[6] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[7] Wu Chunlan,Tang Hua,Chen Jun. Alveolar bone morphology of anterior teeth areas in patients with high-angle skeletal Class Ⅱ open bite [J]. Int J Stomatol, 2021, 48(4): 426-432.
[8] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[9] Ma Xindi,Chen Lei. Pulp and periodontal ligament healing of tooth avulsion replantation: from biological basis to guidelines [J]. Int J Stomatol, 2020, 47(3): 336-344.
[10] Chen Yiyin,Liu Junqi,Li Chenghao. Effects of cleft characteristics and orthodontic treatment on alveolar bone grafting in patients with cleft lip and palate [J]. Int J Stomatol, 2020, 47(3): 345-350.
[11] Wang Runting,Fang Fuchun. Progress in research of non-coding RNAs in osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(2): 138-145.
[12] Yu Xiaohong,Liu Yu,Zeng Lian,Yang Yanling,Wang Zhou,Li Wei. Effects of enamel matrix derivative on proliferation and osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(1): 24-31.
[13] Xin Gao,Rongsheng Zeng. Research progress on osteoprotegerin in oral science [J]. Int J Stomatol, 2019, 46(3): 316-319.
[14] Yixuan Jiang,Longyi Mo,Xiaoyue Jia,Xin Xu,Chengcheng Liu. Prevention and treatment for periodontitis by phytoestrogens [J]. Inter J Stomatol, 2018, 45(5): 571-578.
[15] Jia Linglu, Wen Yong, Xu Xin. Effects of culture conditions in vitro on the biological characteristics of periodontal ligament stem cells [J]. Inter J Stomatol, 2018, 45(3): 255-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .