Inter J Stomatol ›› 2019, Vol. 46 ›› Issue (2): 228-233.doi: 10.7518/gjkq.2019027

• Reviews • Previous Articles     Next Articles

Recent research progress on the drug-loaded antibacterial coatings of titanium implants based on covalent grafting

Yuhao Liu,Quan Yuan,Shiwen Zhang()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-08-09 Revised:2018-12-03 Online:2019-03-01 Published:2019-03-15
  • Contact: Shiwen Zhang E-mail:sw.zhang2018@scu.edu.cn
  • Supported by:
    This study was supported by National Natural Science Fundation of China(81571001)

Abstract:

Implant-related infection has become an important factor affecting the success rate of titanium implants and a new research hotspot in developing coating materials with antibacterial properties on the implant surface, especially drug-loaded antibacterial coatings. Covalent grafting is an emerging strategy for the immobilisation of antibacterial drugs on the implant surface through covalent bonds. Compared with other drug-loading strategies, covalent grafting is advantageous in optimising drug release kinetics, novel antibacterial mechanisms and drug stability. This article reviewed the modes of construction, application advantages/disadvantages and prospective development of drug-loaded antibacterial coatings of titanium implants based on covalent grafting.

Key words: titanium implant, drug-loading, antibacterial, covalent grafting

CLC Number: 

  • R613

TrendMD: 

Fig 1

Physical mixed drug-loading coatings"

Fig 2

Covalent grafting drug-loaded coatings"

Tab 1

Non-antibiotics used in covalently grafted antimicrobial coatings"

类型 举例 应用优点 潜在不足
抗菌肽 hLf1-11[19],KR-12[20],GL13K[21] 广谱抗菌;致敏性弱;较难产生耐药性 共价接枝可能影响分子构象
金属类 [22] 低浓度即可广谱抗菌;较少产生耐药性 其浓度选择及长期毒性有待深入探究
[23] 为人体微量元素,安全性高;有明确的抗菌作用 抗菌作用机制尚未阐明
其他类 壳聚糖[24,25] 生物相容性与生物降解性好;抗菌作用明确 性能极大依赖于脱乙酰程度及分子质量
聚苯乙烯磺酸钠[26,27] 兼有抗菌与促进成骨细胞分化性能 性能依赖于分子质量;促成骨细胞分化机制不明
[1] 李涛, 王娜, 张振庭 . 局部载药涂层预防种植体周围感染的研究进展[J]. 北京口腔医学, 2017,25(5):297-300.
Li T, Wang N, Zhang ZT . Research progress on local drug-loaded coatings for the prevention of peri-im-plant infection[J]. Beijing J Stomatol, 2017,25(5):297-300.
[2] 翁升欣, 赵旭, 关岳锋 , 等. 口腔种植体抗菌涂层材料研究进展[J]. 中国实用口腔科杂志, 2016,9(1):49-53.
doi: 10.7504/kq.2016.01.011
Weng SX, Zhao X, Guan YF , et al. Research progress of oral implant antimicrobial coating material[J]. Chin J Pract Stomatol, 2016,9(1):49-53.
doi: 10.7504/kq.2016.01.011
[3] Goudouri OM, Kontonasaki E, Lohbauer U , et al. Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy[J]. Acta Biomater, 2014,10(8):3795-3810.
doi: 10.1016/j.actbio.2014.03.028 pmid: 24704700
[4] 于娜, 唐晓琳 . 种植体周围炎的危险因素及其防治新进展[J]. 牙体牙髓牙周病学杂志, 2017,27(1):49-52.
doi: 10.15956/j.cnki.chin.j.conserv.dent.2017.01.011
Yu N, Tang XL . Peri-implantitis and its risk factors, prevention and treatment[J]. Chin J Conserv Dent, 2017,27(1) : 49-52.
doi: 10.15956/j.cnki.chin.j.conserv.dent.2017.01.011
[5] Smeets R, Stadlinger B, Schwarz F , et al. Impact of dental implant surface modifications on osseointe-gration[J]. Biomed Res Int, 2016,2016:6285620.
[6] Shalabi MM, Gortemaker A, Van’t Hof MA , et al. Implant surface roughness and bone healing: a sys-tematic review[J]. J Dent Res, 2006,85(6):496-500.
doi: 10.1016/j.clon.2009.08.014 pmid: 16723643
[7] Lin X, Yang S, Lai K , et al. Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods[J]. Nanomedicine, 2017,13(1):123-142.
doi: 10.1016/j.nano.2016.08.003 pmid: 27553074
[8] Neoh KG, Hu X, Zheng D , et al. Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces[J]. Biomaterials, 2012,33(10):2813-2822.
doi: 10.1016/j.biomaterials.2012.01.018 pmid: 22257725
[9] Seddiki O, Harnagea C, Levesque L , et al. Evidence of antibacterial activity on titanium surfaces through nanotextures[J]. Appl Surf Sci, 2014,308:275-284.
doi: 10.1016/j.apsusc.2014.04.155
[10] Losic D, Aw MS, Santos A , et al. Titania nanotube arrays for local drug delivery: recent advances and perspectives[J]. Expert Opin Drug Deliv, 2015,12(1):103-127.
doi: 10.1517/17425247.2014.945418 pmid: 25376706
[11] Bosco R, Iafisco M, Tampieri A , et al. Hydroxya-patite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity[J]. Appl Surf Sci, 2015,328:516-524.
doi: 10.1016/j.apsusc.2014.12.072
[12] Doadrio AL, Conde A, Arenas MA , et al. Use of anodized titanium alloy as drug carrier: ibuprofen as model of drug releasing[J]. Int J Pharm, 2015,492(1/ 2):207-212.
doi: 10.1016/j.ijpharm.2015.07.046
[13] Ordikhani F, Tamjid E, Simchi A . Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for preven-tion of implant-associated infections[J]. Mater Sci Eng C Mater Biol Appl, 2014,41:240-248.
doi: 10.1016/j.msec.2014.04.036 pmid: 24907757
[14] 徐倩, 冯青, 欧俊 , 等. 层层静电自组装构建载药种植体的研究[J]. 华西口腔医学杂志, 2014,32(6):537-541.
doi: 10.7518/hxkq.2014.06.002
Xu Q, Feng Q, Ou J , et al. Construction of drug-loaded titanium implants via layer-by-layer electro-static self-assembly[J]. West Chin J Stomatol, 2014,32(6):537-541.
doi: 10.7518/hxkq.2014.06.002
[15] Lyndon JA, Boyd BJ, Birbilis N . Metallic implant drug/device combinations for controlled drug release in orthopaedic applications[J]. J Control Release, 2014,179:63-75.
doi: 10.1016/j.jconrel.2014.01.026 pmid: 24512924
[16] Edupuganti OP, Antoci V Jr, King SB , et al. Covalent bonding of vancomycin to Ti6Al4V alloy pins provides long-term inhibition of Staphylococcus aureus colonization[J]. Bioorg Med Chem Lett, 2007,17(10):2692-2696.
doi: 10.1016/j.bmcl.2007.03.005 pmid: 17369042
[17] Nie B, Ao H, Zhou J , et al. Biofunctionalization of titanium with bacitracin immobilization shows po-tential for anti-bacteria, osteogenesis and reduction of macrophage inflammation[J]. Colloids Surf B Biointerfaces, 2016,145:728-739.
doi: 10.1016/j.colsurfb.2016.05.089 pmid: 27289314
[18] Walter MS, Frank MJ, Satué M , et al. Bioactive implant surface with electrochemically bound dox-ycycline promotes bone formation markers in vitro and in vivo[J]. Dent Mater, 2014,30(2):200-214.
doi: 10.1016/j.dental.2013.11.006 pmid: 24377939
[19] Godoy-Gallardo M, Mas-Moruno C, Yu K , et al. Antibacterial properties of hLf1-11 peptide onto titanium surfaces: a comparison study between silanization and surface initiated polymerization[J]. Biomacromolecules, 2015,16(2):483-496.
doi: 10.1021/bm501528x pmid: 25545728
[20] Nie B, Long T, Li H , et al. A comparative analysis of antibacterial properties and inflammatory responses for the KR-12 peptide on titanium and PEGylated titanium surfaces[J]. RSC Adv, 2017, ( 55):34321-34330.
doi: 10.1039/C7RA05538B
[21] Holmberg KV, Abdolhosseini M, Li Y , et al. Bio-inspired stable antimicrobial peptide coatings for dental applications[J]. Acta Biomater, 2013,9(9):8224-8231.
doi: 10.1016/j.actbio.2013.06.017 pmid: 3758876
[22] Tîlmaciu CM, Mathieu M, Lavigne JP , et al. In vitro and in vivo characterization of antibacterial activity and biocompatibility: a study on silver-containing phosphonate monolayers on titanium[J]. Acta Bio-mater, 2015,15:266-277.
doi: 10.1016/j.actbio.2014.12.020 pmid: 25562573
[23] Holinka J, Pilz M, Kubista B , et al. Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth[J]. Bone Joint J, 2013,95-B(5):678-682.
doi: 10.1302/0301-620X.95B5.31216 pmid: 23632681
[24] D’Almeida M, Attik N, Amalric J , et al. Chitosan coating as an antibacterial surface for biomedical applications[J]. PLoS One, 2017,12(12):e0189537.
doi: 10.1371/journal.pone.0189537 pmid: 5728531
[25] Vaz JM, Michel EC, Chevallier P , et al. Covalent crafting of chitosan on plasma-treated polytetra-fluoroethylene surfaces for biomedical applications[J]. J Biomater Tiss Eng, 2014,4(11):915-924.
doi: 10.1166/jbt.2014.1262
[26] Alcheikh A, Pavon-Djavid G, Helary G , et al. Poly-NaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion[J]. J Mater Sci Mater Med, 2013,24(7):1745-1754.
doi: 10.1007/s10856-013-4932-3 pmid: 23625318
[27] Chouirfa H, Evans MDM, Bean P , et al. Grafting of bioactive polymers with various architectures: a versatile tool for preparing antibacterial infection and biocompatible surfaces[J]. ACS Appl Mater Interfaces, 2018,10(2):1480-1491.
doi: 10.1021/acsami.7b14283 pmid: 29266919
[28] Godoy-Gallardo M, Mas-Moruno C, Fernández-Calderón MC , et al. Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bac-terial adhesion and biofilm formation[J]. Acta Biomater, 2014,10(8):3522-3534.
doi: 10.1016/j.actbio.2014.03.026 pmid: 24704699
[29] Lv H, Chen Z, Yang X , et al. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation[J]. J Dent, 2014,42(11):1464-1472.
doi: 10.1016/j.jdent.2014.06.003 pmid: 24930872
[30] Li M, Liu Q, Jia ZJ , et al. Polydopamine-induced nanocomposite Ag/CaP coatings on the surface of titania nanotubes for antibacterial and osteointegra-tion functions[J]. J Mater Chem B, 2015,3(45):8796-8805.
doi: 10.1039/C5TB01597A
[31] Kanitthamniyom P, Zhang Y . Application of polydo-pamine in biomedical microfluidic devices[J]. Micro-fluid Nanofluid, 2018,22:24.
doi: 10.1007/s10404-018-2044-6
[32] Raphel J, Holodniy M, Goodman SB , et al. Multi-functional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants[J]. Biomaterials, 2016,84:301-314.
doi: 10.1016/j.biomaterials.2016.01.016 pmid: 26851394
[33] Vaithilingam J, Kilsby S, Goodridge RD , et al. Im-mobilisation of an antibacterial drug to Ti6Al4V components fabricated using selective laser melting[J]. Appl Surf Sci, 2014,314:642-654.
doi: 10.1016/j.apsusc.2014.06.014
[34] Masters KS . Covalent growth factor immobilization strategies for tissue repair and regeneration[J]. Macromol Biosci, 2011,11(9):1149-1163.
doi: 10.1002/mabi.201000505 pmid: 21509937
[35] Gao G, Lange D, Hilpert K , et al. The biocompati-bility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides[J]. Biomaterials, 2011,32(16):3899-3909.
doi: 10.1016/j.biomaterials.2011.02.013 pmid: 21377727
[36] Riool M, de Breij A, Drijfhout JW , et al. Antimicro-bial peptides in biomedical device manufacturing[J]. Front Chem, 2017,5:63.
doi: 10.3389/fchem.2017.00063 pmid: 5609632
[37] Abdolhosseini M, Nandula SR, Song J , et al. Lysine substitutions convert a bacterial-agglutinating pe-ptide into a bactericidal peptide that retains anti-lipo-polysaccharide activity and low hemolytic activity[J]. Peptides, 2012,35(2):231-238.
doi: 10.1016/j.peptides.2012.03.017 pmid: 3356437
[38] Nijhuis AW, van den Beucken JJ, Boerman OC , et al. 1-step versus 2-step immobilization of alkaline pho-sphatase and bone morphogenetic protein-2 onto implant surfaces using polydopamine[J]. Tissue Eng Part C Methods, 2013,19(8):610-619.
doi: 10.1089/ten.tec.2012.0313 pmid: 3689932
[39] Hardy JG, Palma M, Wind SJ , et al. Responsive biomaterials: advances in materials based on shape-memory polymers[J]. Adv Mater, 2016,28(27):5717-5724.
doi: 10.1002/adma.201505417 pmid: 27120512
[40] Qin H, Cao H, Zhao Y , et al. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium[J]. Biomaterials, 2014,35(33):9114-9125.
doi: 10.1016/j.biomaterials.2014.07.040 pmid: 25112937
[41] Chen X, Zhou XC, Liu S , et al. In vivo osseointe-gration of dental implants with an antimicrobial peptide coating[J]. J Mater Sci Mater Med, 2017,28(5):76.
doi: 10.1007/s10856-017-5885-8
[42] Wang L, Chen J, Cai C , et al. Multi-biofunctionalization of a titanium surface with a mixture of peptides to achieve excellent antimicrobial activity and biocom-patibility[J]. J Mater Chem B, 2015,3(1):30-33.
doi: 10.1039/C4TB01318B
[43] Hoyos-Nogués M, Velasco F, Ginebra MP , et al. Regenerating bone via multifunctional coatings: the blending of cell integration and bacterial inhibition properties on the surface of biomaterials[J]. ACS Appl Mater Interfaces, 2017,9(26):21618-21630.
doi: 10.1021/acsami.7b03127 pmid: 28594999
[1] Tan Yongzhen,Liang Xinhua. Research progress on the antibacterial mechanism of oral local anesthetics [J]. Int J Stomatol, 2024, 51(1): 74-81.
[2] Wu Sijia,Shu Chang,Wang Yang,Wang Yuan,Deng Shuli,Wang Huiming.. Effect and research progress on root canal infection management of regenerative endodontic procedure in immature permanent teeth [J]. Int J Stomatol, 2023, 50(4): 388-394.
[3] Gao Yutian,Su Qin. Research and application of electrolyzed-oxidizing water in the field of root canal treatment [J]. Int J Stomatol, 2023, 50(4): 401-406.
[4] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[5] Zhu Junjin,Wang Jian.. Advances in the loading methods of silver nanoparticles on the surface of titanium implants [J]. Int J Stomatol, 2021, 48(3): 334-340.
[6] Wang Huan,Liu Yang,Qi Mengchun,Li Jingyi,Liu Mengnan,Sun Hong. Research progress on the preparation of titanium-based implant surface coatings by micro-arc oxidation [J]. Int J Stomatol, 2020, 47(4): 439-444.
[7] Feng Jin,Wu Hongkun. Research progress on antibacterial dental materials in the treatment of root caries [J]. Int J Stomatol, 2019, 46(4): 475-480.
[8] Mengqi Liu,Kuo Gai,Li Jiang. Research progress on oral implant materials with antimicrobial properties [J]. Inter J Stomatol, 2018, 45(5): 516-521.
[9] Xingying Qi,Guoying Zheng,Lei. Sui. Effects of titanium implant surface topographies on osteogenesis [J]. Inter J Stomatol, 2018, 45(5): 527-533.
[10] Xueyang Deng,Lanlan Pan,Ting Hu,Wenhua Li,Xuerong. Xiang. Preparation of graphene oxide coatings on titanium alloy surface [J]. Inter J Stomatol, 2018, 45(5): 539-545.
[11] Liu Dan, Ren Biao, Cheng Lei.. Research development of silver nanoparticle on prevention and treatment of oral infectious disease [J]. Inter J Stomatol, 2018, 45(4): 408-413.
[12] Zeng Yue, Xia Haibin, Wang Min. Research progress on the mechanical and antibacterial properties of nanomaterial-modified denture base [J]. Inter J Stomatol, 2018, 45(4): 455-458.
[13] Wang Nan, Lian Yunmin,Gao Lan,Ma Xuemin. The inhibition of the organosilicon quaternary ammonium salt treated pure titanium to the Candida albicans [J]. Inter J Stomatol, 2017, 44(2): 175-178.
[14] Chen Hui, Cheng Lei.. Research progress on anti-caries dental adhesives [J]. Inter J Stomatol, 2017, 44(1): 92-97.
[15] Liu Yi1, Zhou Rongjing2, Fei Wei1.. Immunohistochemical localization and antimicrobial properties of high mobility group protein N2 [J]. Inter J Stomatol, 2016, 43(6): 661-665.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .