Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (3): 280-285.doi: 10.7518/gjkq.2018.03.007

• Stem Cell • Previous Articles     Next Articles

Characteristics of dental tissue-derived stem cells and their application in bone tissue engineering

Zhou Jie, Wang Ying, Zhang Lei, Wu Tingting, Zhou Yong, Zou Duohong   

  1. College of Stomatology, Anhui Medical University, Dept. of Implantology, Affiliated Stomatological Hospital, Anhui Medical University, Key Laboratory of Oral Diseases Research in Anhui Province, Hefei 230032, China
  • Received:2017-11-14 Revised:2018-01-29 Published:2018-05-08
  • Supported by:
    This study was supported by National Natural Science Foundation of China (31370983), Excellent Youth Foundation of Anhui Scientific Committee (1508085J08) and Key Program in the Youth Elite Support Plan in Universities of Anhui Province (gxyqZD2016058).

Abstract: In recent years, adult stem cells obtained from dental tissue, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, apical papilla stem cells, periodontal ligament stem cells and follicle progenitor cells, provide sources of seed cells for oral tissue engineering in dentistry. In this paper, we review the characteristics of these adult stem cells and their applications in bone tissue engineering.

Key words: adult stem cell, seed cell, dental tissue-derived stem cell, bone tissue engineering

CLC Number: 

  • Q813.1

TrendMD: 
[1] Moore KA, Lemischka IR.Stem cells and their niches[J]. Science, 2006, 311(5769):1880-1885.
[2] Mitsiadis TA, Barrandon O, Rochat A, et al.Stem cell niches in mammals[J]. Exp Cell Res, 2007, 313(16):3377-3385.
[3] Gronthos S, Mankani M, Brahim J, et al.Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Nat Acad Sci USA, 2000, 97(25): 13625-13630.
[4] Miura M, Gronthos S, Zhao M, et al.SHED: stem cells from human exfoliated deciduous teeth[J]. Proc Natl Acad Sci USA, 2003, 100(10):5807-5812.
[5] Sonoyama W, Liu Y, Fang D, et al.Mesenchymal stem cell-mediated functional tooth regeneration in swine[J]. PLoS One, 2006, 1:e79.
[6] Seo BM, Miura M, Gronthos S, et al.Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364(9429): 149-155.
[7] Morsczeck C, Götz W, Schierholz J, et al.Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth[J]. Matrix Biol, 2005, 24(2):155-165.
[8] Yan X, Qin H, Qu C, et al.iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin[J]. Stem Cells Dev, 2010, 19(4):469-480.
[9] Lee SY, Chiang PC, Tsai YH, et al.Effects of cryo-preservation of intact teeth on the isolated dental pulp stem cells[J]. J Endod, 2010, 36(8):1336-1340.
[10] Suh JD, Lim KT, Jin H, et al.Effects of co-culture of dental pulp stem cells and periodontal ligament stem cells on assembled dual disc scaffolds[J]. Tissue Eng Regen Med, 2014, 11(1):47-58.
[11] Carinci F, Papaccio G, Laino G, et al.Comparison between genetic portraits of osteoblasts derived from primary cultures and osteoblasts obtained from human pulpar stem cells[J]. J Craniofac Surg, 2008, 19(3): 616-625.
[12] Annibali S, Bellavia D, Ottolenghi L, et al.Micro-CT and PET analysis of bone regeneration induced by biodegradable scaffolds as carriers for dental pulp stem cells in a rat model of calvarial “critical size” defect: preliminary data[J]. J Biomed Mater Res Part B Appl Biomater, 2014, 102(4):815-825.
[13] Zhang W, Walboomers XF, van Osch GJ, et al. Hard tissue formation in a porous HA/TCP ceramic scaf-fold loaded with stromal cells derived from dental pulp and bone marrow[J]. Tissue Eng Part A, 2008, 14(2):285-294.
[14] Laino G, d’Aquino R, Graziano A, et al. A new po-pulation of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB)[J]. J Bone Miner Res, 2005, 20(8):1394-1402.
[15] Amir LR, Suniarti DF, Utami S, et al.Chitosan as a potential osteogenic factor compared with dexame-thasone in cultured macaque dental pulp stromal cells[J]. Cell Tissue Res, 2014, 358(2):407-415.
[16] Chen Y, Zhang F, Fu Q, et al.In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel[J]. J Biomater Appl, 2016, 31(3):317-327.
[17] Suchánek J, Visek B, Soukup T, et al.Stem cells from human exfoliated deciduous teeth—isolation, long term cultivation and phenotypical analysis[J]. Acta Medica (Hradec Kralove), 2010, 53(2):93-99.
[18] Behnia A, Haghighat A, Talebi A, et al.Transplan-tation of stem cells from human exfoliated deciduous teeth for bone regeneration in the dog mandibular defect[J]. World J Stem Cells, 2014, 6(4):505-510.
[19] Seo BM, Sonoyama W, Yamaza T, et al.SHED re-pair critical-size calvarial defects in mice[J]. Oral Dis, 2008, 14(5):428-434.
[20] Farea M, Husein A, Halim AS, et al.Synergistic effects of chitosan scaffold and TGFβ1 on the proli-feration and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth[J]. Arch Oral Biol, 2014, 59(12):1400-1411.
[21] Vakhrushev IV, Antonov EN, Popova AV, et al.De- sign of tissue engineering implants for bone tissue regeneration of the basis of new generation polylac-toglycolide scaffolds and multipotent mesenchymal stem cells from human exfoliated deciduous teeth (SHED cells)[J]. Bull Exp Biol Med, 2012, 153(1): 143-147.
[22] Wang S, Mu J, Fan Z, et al.Insulin-like growth fac-tor 1 can promote the osteogenic differentiation and osteogenesis of stem cells from apical papilla[J]. Stem Cell Res, 2012, 8(3):346-356.
[23] Wu J, Huang GT, He W, et al.Basic fibroblast growth factor enhances stemness of guman stem cells from the apical papilla[J]. J Endodon, 2012, 38(5):614-622.
[24] Chen YJ, Chung MC, Jane Yao CC, et al.The effects of acellular amniotic membrane matrix on osteogenic differentiation and ERK1/2 signaling in human den-tal apical papilla cells[J]. Biomaterials, 2012, 33(2): 455-463.
[25] Lee JH, Um S, Jang JH, et al.Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells[J]. Cell Tissue Res, 2012, 348(3):475-484.
[26] Yu Y, Mu J, Fan Z, et al.Insulin-like growth factor 1 enhances the proliferation and osteogenic differen-tiation of human periodontal ligament stem cells via ERK and JNK MAPK pathways[J]. Histochem Cell Biol, 2012, 137(4):513-525.
[27] Zhou Q, Zhao ZN, Cheng JT, et al.Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs[J]. Biochem Biophys Res Commun, 2011, 404(1):127-132.
[28] Zhang C, Li J, Zhang L, et al.Effects of mechanical vibration on proliferation and osteogenic differentia-tion of human periodontal ligament stem cells[J]. Arch Oral Biol, 2012, 57(10):1395-1407.
[29] Yamada Y, Ito K, Nakamura S, et al.Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow[J]. Cell Transplant, 2011, 20(7):1003-1013.
[30] Moshaverinia A, Chen C, Akiyama K, et al.Enca-psulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applica-tions in bone tissue engineering[J]. J Biomed Mater Res A, 2013, 101(11):3285-3294.
[31] Moshaverinia A, Chen C, Xu X, et al.Bone rege-neration potential of stem cells derived from perio-dontal ligament or gingival tissue sources enca-psulated in RGD-modified alginate scaffold[J]. Tissue Eng Part A, 2014, 20(3/4):611-621.
[32] Yang H, Gao LN, An Y, et al.Comparison of mesen-chymal stem cells derived from gingival tissue and periodontal ligament in different incubation condi-tions[J]. Biomaterials, 2013, 34(29):7033-7047.
[33] Tour G, Wendel M, Moll G, et al.Bone repair using periodontal ligament progenitor cell-seeded cons-tructs[J]. J Dent Res, 2012, 91(8):789-794.
[34] Ge S, Zhao N, Wang L, et al.Bone repair by perio-dontal ligament stem cellseeded nanohydroxyapatite-chitosan scaffold[J]. Int J Nanomedicine, 2012, 7: 5405-5414.
[35] Morsczeck C, Schmalz G, Reichert TE, et al.Soma-tic stem cells for regenerative dentistry[J]. Clin Oral Investig, 2008, 12(2):113-118.
[36] Xu LL, Liu HC, Wang DS, et al.Effects of BMP-2 and dexamethasone on osteogenic differentiation of rat dental follicle progenitor cells seeded on three-dimensional beta-TCP[J]. Biomed Mater, 2009, 4(6): 065010.
[37] Honda MJ, Imaizumi M, Suzuki H, et al.Stem cells isolated from human dental follicles have osteogenic potential[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011, 111(6):700-708.
[38] Drees J, Felthaus O, Gosau M, et al.Butyrate stimu-lates the early process of the osteogenic differentia-tion but inhibits the biomineralization in dental fol-licle cells (DFCs)[J]. Odontology, 2014, 102(2):154-159.
[39] 李琨, 雷鸣, 高丽娜, 等. 小型猪牙髓、牙周膜干细胞的生物学性能比较[J]. 牙体牙髓牙周病学杂志, 2014, 24(2):61-65.
Li K, Lei M, Gao LN, et al.Characterization of den-tal pulp stem cells and periodontal ligament stem cells from miniature pig[J]. Chin J Conserv Dent, 2014, 24(2):61-65.
[40] 许诺, 覃猇姝. 人乳牙牙髓干细胞和成人牙髓干细胞研究进展[J]. 牙体牙髓牙周病学杂志, 2008, 18(12):709-713.
Xu N, Qin XS.Study progress of stem cells from human exfoliated deciduous teeth and human dental pulp[J]. Chin J Conserv Dent, 2008, 18(12):709-713.
[41] 路博闻, 刘娜, 徐璐璐, 等. 人脱落乳牙牙髓干细胞与人恒牙牙髓干细胞成骨分化及破骨能力的差异[J]. 南方医科大学学报, 2016, 36(2):180-185.
Lu BW, Liu N, Xu LL, et al.Difference of in vitro osteogenic differentiation and osteoclast capacity between stem cells from human exfoliated deciduous teeth and dental pulp stem cells[J]. J South Med Univ, 2016, 36(2):180-185.
[1] Chen Runzhi,Zhang Wentao,Chen Feng,Yang Fan. Modification of silk fibroin-based hydrogels and their applications for bone tissue engineering [J]. Int J Stomatol, 2023, 50(6): 739-746.
[2] Li Peiyi,Zhang Xinchun. Research progress on the effects of microenvironment acid-base level in tissue-engineered bone regeneration [J]. Int J Stomatol, 2021, 48(1): 64-70.
[3] Liu Yuhao,Zhang Tao. Research progress on shape memory polymers in bone defect repair and regeneration [J]. Int J Stomatol, 2020, 47(2): 219-224.
[4] Zou Jundong,Liu Dingkun,Yang Nan,Wang Mi,Liu Zhihui. An overview of bioactive glasses/chitosan composites for biomedical applications [J]. Int J Stomatol, 2020, 47(1): 90-94.
[5] Zhang Kaiying,Fang Fuchun,Wu Buling. Research progress on non-coding RNA in odontoblastic differentiation of dental tissue-derived stem cells [J]. Int J Stomatol, 2019, 46(5): 540-545.
[6] Zhengmou Dong,Rui Liu,Luchuan Liu,Xiujie Wen. Research progress on the seed cells in periodontal tissue regeneration [J]. Inter J Stomatol, 2019, 46(1): 48-54.
[7] Fang Yi,Siren Wang,Yanhao Chu,Yanqin. Lu. Research progress on the repair of alveolar cleft with bone tissue engineering scaffolds [J]. Inter J Stomatol, 2018, 45(5): 603-610.
[8] Liang Xinyu, Shi Jiabo, Chen Wenchuan, Zhu Zhimin. Research progress on synthetic nanosilicates in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 340-345.
[9] Zhang Yixin, Li Lei. Development of calcium phosphate scaffolds as drug delivery system in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 346-350.
[10] Zhang Jia, Liu Zhonghao. Research progress on strontium in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(1): 50-54.
[11] Zheng Jianmao, Mao Xueli, Ling Junqi.. Research progress on the Mg-based material scaffolds and its application in animal bone tissue engineering [J]. Int J Stomatol, 2015, 42(6): 720-723.
[12] Sun Ying, Li Zhengqiang, Han Bing. The effect of surface treatment on cell adhesion and proliferation of silk fibroin tissue engineering material [J]. Inter J Stomatol, 2015, 42(5): 583-585.
[13] Si Jiawen1, Guo Lihe2, Shen Guofang1. Biological characteristics and osteogenic differentiation of amniotic epithelial cells [J]. Inter J Stomatol, 2014, 41(5): 575-578.
[14] Tang Yuxin1, Jin Han1, Shi Ce1, Zhu Yang1, Wang Dandan1, Wang He1, Lin Chongtao2, Sun Hongchen1.. Adipose-derived stem cells and their importance to the regulatory mechanism of osteoblast differentiation [J]. Inter J Stomatol, 2014, 41(4): 418-423.
[15] ZHANG Xu-fang, LING Jun-qi.. Role of high mobility group box-1 in the migration of adult stem cells [J]. Inter J Stomatol, 2011, 38(3): 308-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .