Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (1): 50-54.doi: 10.7518/gjkq.2018.01.010

• Original Articles • Previous Articles     Next Articles

Research progress on strontium in bone tissue engineering

Zhang Jia, Liu Zhonghao   

  1. Dept. of Implantology, Stomatological Hospital of Yantai, Yantai 264000, China
  • Received:2017-05-05 Revised:2017-10-02 Online:2018-01-01 Published:2018-01-01

Abstract: Bone substitute materials are widely used in the process of repairing bone defect, the addition of factors promoting bone regeneration is the main hot spots in the research of bone substitute materials. As a necessary trace element, strontium can simultaneously stimulate new bone formation and reduce bone absorption in vivo. In recent years, many scholars combined strontium with all kinds of bone substitute materials, found that strontium can not only improve the physical and chemical properties of bone substitute materials, but also can change cell behavior, improve the abilities of osteogenesis. This article summarized the above aspects of strontium-doping bone substitute materials.

Key words: bone subsititute materials, strontium, bone defect, bone tissue engineering

CLC Number: 

  • R783.1

TrendMD: 
[1]Kotsakis GA, Salama M, Chrepa V, et al. A rando-mized, blinded, controlled clinical study of par-ticulate anorganic bovine bone mineral and calcium phosphosilicate putty bone substitutes for socket pre-servation[J]. Int J Oral Maxillofac Implants, 2014, 29(1):141-151.
[2]Toloue SM, Chesnoiu-Matei I, Blanchard SB. A clinical and histomorphometric study of calcium sulfate compared with freeze-dried bone allograft for alveolar ridge preservation[J]. J Periodontol, 2012, 83(7):847-855.
[3]Tal H. Autogenous masticatory mucosal grafts in extraction socket seal procedures: a comparison be-tween sockets grafted with demineralized freeze-dried bone and deproteinized bovine bone mineral[J]. Clin Oral Implants Res, 1999, 10(4):289-296.
[4]Canalis E, Hott M, Deloffre P, et al. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro [J]. Bone, 1996, 18(6): 517-523.
[5]Bonnelye E, Chabadel A, Saltel F, et al. Dual effect of strontium ranelate: stimulation of osteoblast dif-ferentiation and inhibition of osteoclast formation and resorption in vitro [J]. Bone, 2008, 42(1):129- 138.
[6]Marie PJ. Strontium ranelate: new insights into its dual mode of action[J]. Bone, 2007, 40(5):S5-S8.
[7]Baron R, Tsouderos Y. In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation[J]. Eur J Pharmacol, 2002, 450(1):11- 17.
[8]邱凯. 掺锶聚磷酸钙作为骨组织工程支架材料的研究[D]. 成都: 四川大学, 2005. Qiu K. Strontium doped calcium polyphosphate as scaffold material for bone tissue engineering[D]. Chengdu: Sichuan University, 2005.
[9]Sekine K, Sakama M, Hamada K. Evaluation of strontium introduced apatite cement as the injectable bone substitute developments[J]. Conf Proc IEEE Eng Med Biol Soc, 2013, 2013:858-861.
[10]黄强, 李程, 周宗科, 等. 掺锶硫酸钙复合骨修复材料的制备及体外特性研究[J]. 生物医学工程学杂志, 2009(3):575-579. Huang Q, Li C, Zhou ZK, et al. Preparation and in vitro characteristics of strontium doped calcium sulfate composite bone repair material[J]. J Biomed Eng, 2009(3):575-579.
[11]Landi E, Tampieri A, Celotti G, et al. Sr-substituted hydroxyapatites for osteoporotic bone replacement [J]. Acta Biomater, 2007, 3(6):961-969.
[12]Ni GX, Shu B, Huang G, et al. The effect of stron-tium incorporation into hydroxyapatites on their physical and biological properties[J]. J Biomed Mater Res B Appl Biomater, 2011, 100(2):562-568.
[13]Pan HB, Li ZY, Lam WM, et al. Solubility of strontium-substituted apatite by solid titration[J]. Acta Biomater, 2009, 5(5):1678-1685.
[14]赵彦涛, 侯树勋, 闫钧, 等. 掺锶冻干骨的制备方法[J]. 口腔医学研究, 2011, 27(1):9-11. Zhao YT, Hou SX, Yan J, et al. Preparation of stron-tium incorporated frozen dried bone[J]. J Oral Sci Res, 2011, 27(1):9-11.
[15]Wu C, Fan W, Gelinsky M, et al. Bioactive SrO-SiO 2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties[J]. Acta Biomater, 2011, 7(4):1797-1806.
[16]Qiu K, Zhao XJ, Wan CX, et al. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds[J]. Biomaterials, 2006, 27(8):1277-1286.
[17]Rodrigues TL, Foster BL, Silverio KG, et al. Hypo-phosphatasia-associated deficiencies in mineraliza-tion and gene expression in cultured dental pulp cells obtained from human teeth[J]. J Endod, 2012, 38(7): 907-912.
[18]Bhakta G, Rai B, Lim ZX, et al. Hyaluronic acid-based hydrogels functionalized with heparin that support controlled release of bioactive BMP-2[J]. Biomaterials, 2012, 33(26):6113-6122.
[19]李伟, 黄强, 黄丹丹. 掺锶硫酸钙骨修复材料体外细胞相容性研究[J]. 成都医学院学报, 2013, 8:152- 155. Li W, Huang Q, Huang DD. The in vitro compati-bility study of strontium-calclum sulfate compounds as biocutive bone grafted substitute[J]. J Chengdu Med College, 2013, 8(2):152-155.
[20]Sakai A, Valanezahad A, Ozaki M, et al. Preparation of Sr-containing carbonate apatite as a bone subs-titute and its properties[J]. Dent Mater J, 2012, 31 (2):197-205.
[21]Zhang Y, Wei L, Chang J, et al. Strontium-incor-porated mesoporous bioactive glass scaffolds stimu-lating in vitro proliferation and differentiation of bone marrow stromal cells and in vivo regeneration of osteoporotic bone defects[J]. J Mater Chem B, 2013, 1(41):5711-5722.
[22]Zhang W, Shen Y, Pan H, et al. Effects of strontium in modified biomaterials[J]. Acta Biomater, 2011, 7 (2):800-808.
[23]Liu F, Zhang X, Yu X, et al. In vitro study in stimu-lating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering[J]. J Mater Sci Mater Med, 2011, 22(3):683-692.
[24]彭红, 顾志鹏, 黄程程, 等. 掺锶聚磷酸钙共培养成骨细胞与内皮细胞: 行为和功能蛋白的变化[J]. 中国组织工程研究, 2014, 18(3):365-370. Peng H, Gu ZP, Huang CC, et al. Effects of stron-tium-doped calcium polyphosphate on behavior and angiogenic growth factors expression of co-cultured osteoblasts and endothelial cells[J]. Chin J Tissue Eng Res, 2014, 18(3):365-370.
[25]Zhao S, Zhang J, Zhu M, et al. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects[J]. Acta Biomater, 2015, 12:270-280.
[26]余喜讯, 陈元维, 史国齐, 等. 掺锶聚磷酸钙骨组织工程支架材料与成骨细胞及内皮细胞的相容性研究[J]. 中国组织工程研究与临床康复, 2007, 11 (15):857-860. Yu XX, Chen YW, Shi GQ, et al. Cytocompatibility of strontium-doped calcium polyphosphate tissue engineering materials to osteoblast and endothelial cells[J]. J Clin Rehab Tissue Eng Res, 2007, 11(15): 857-860.
[27]余喜讯, 顾志鹏, 任大伟, 等. 新型骨科材料SCPP对成骨细胞促血管化生长因子表达影响的研究[J]. 四川大学学报(工程科学版), 2011, 43(1):219- 225. Yu XX, Gu ZP, Ren DW, et al. Study of the influence of SCPP on angiogenic growth factors expression of osteoblasts[J]. J Sichuan Univ (Eng Sci Ed), 2011, 43(1):219-225.
[28]冯婷, 顾志鹏, 任大伟, 等. 掺锶聚磷酸钙对破骨细胞的影响[J]. 中国组织工程研究与临床康复, 2008, 12(1):19-22. Feng T, Gu ZP, Ren DW, et al. Effects of strontium-doped calcium polyphosphate on osteoclast[J]. J Clin Rehab Tissue Eng Res, 2008, 12(1):19-22.
[29]Kaygili O, Keser S, Kom M, et al. Strontium subs-tituted hydroxyapatites: synthesis and determination of their structural properties, in vitro and in vivo performance[J]. Mater Sci Eng C Mater Biol Appl, 2015, 55:538-546.
[30]Wong CT, Lu WW, Chan WK, et al. In vivo cancellous bone remodeling on a strontium-containing hydro-xyapatite (sr-HA) bioactive cement[J]. J Biomed Mater Res A, 2004, 68(3):513-521.
[31]刘彪, 李运峰, 胡静. 含锶羟基磷灰石对骨质疏松症大鼠的影响[J]. 中国骨质疏松杂志, 2015, 21(5): 524-530. Liu B, Li YF, Hu J. The effect of strontium-containing hydroxyapatite implants in osteoporotic rats[J]. Chin J Osteoporos, 2015, 21(5):524-530.
[32]Baier M, Staudt P, Klein R, et al. Strontium enhances osseointegration of calcium phosphate cement: a histomorphometric pilot study in ovariectomized rats [J]. J Orthop Surg Res, 2013, 8:16.
[33]Newman SD, Lotfibakhshaiesh N, O’Donnell M, et al. Enhanced osseous implant fixation with stron-tium-substituted bioactive glass coating[J]. Tissue Eng Part A, 2014, 20(13/14):1850-1857.
[34]Vestermark MT. Strontium in the bone-implant interface[J]. Dan Med Bull, 2011, 58(5):B2486.
[35]Thormann U, Ray S, Sommer U, et al. Bone forma-tion induced by strontium modified calcium pho-sphate cement in critical-size metaphyseal fracture defects in ovariectomized rats[J]. Biomaterials, 2013, 34(34):8589-8598.
[36]Wei L, Ke J, Prasadam I, et al. A comparative study of Sr-incorporated mesoporous bioactive glass scaf-folds for regeneration of osteopenic bone defects[J]. Osteoporos Int, 2014, 25(8):2089-2096.
[37]Ren J, Blackwood KA, Doustgani A, et al. Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration[J]. J Biomed Mater Res A, 2014, 102(9):3140-3153.
[38]Zhang Y, Wei L, Wu C, et al. Periodontal regenera-tion using strontium-loaded mesoporous bioactive glass scaffolds in osteoporotic rats[J]. PLoS One, 2014, 9(8):e104527.
[1] Chen Runzhi,Zhang Wentao,Chen Feng,Yang Fan. Modification of silk fibroin-based hydrogels and their applications for bone tissue engineering [J]. Int J Stomatol, 2023, 50(6): 739-746.
[2] Xu Yanxue,Fu Li.. Research progress on functionally graded membranes for guided bone regeneration [J]. Int J Stomatol, 2023, 50(3): 353-358.
[3] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[4] Li Yanfei,Zhang Xinchun. Research progress on the dentin bone repair material [J]. Int J Stomatol, 2022, 49(2): 197-203.
[5] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[6] Li Peiyi,Zhang Xinchun. Research progress on the effects of microenvironment acid-base level in tissue-engineered bone regeneration [J]. Int J Stomatol, 2021, 48(1): 64-70.
[7] Liu Yuhao,Zhang Tao. Research progress on shape memory polymers in bone defect repair and regeneration [J]. Int J Stomatol, 2020, 47(2): 219-224.
[8] Zou Jundong,Liu Dingkun,Yang Nan,Wang Mi,Liu Zhihui. An overview of bioactive glasses/chitosan composites for biomedical applications [J]. Int J Stomatol, 2020, 47(1): 90-94.
[9] Pengfei Zhao,Qi Wang. Research progress on the etiology and therapy of bone defect during dental implantation under diabetic condition [J]. Inter J Stomatol, 2019, 46(2): 244-248.
[10] Fang Yi,Siren Wang,Yanhao Chu,Yanqin. Lu. Research progress on the repair of alveolar cleft with bone tissue engineering scaffolds [J]. Inter J Stomatol, 2018, 45(5): 603-610.
[11] Zhou Jie, Wang Ying, Zhang Lei, Wu Tingting, Zhou Yong, Zou Duohong. Characteristics of dental tissue-derived stem cells and their application in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 280-285.
[12] Liang Xinyu, Shi Jiabo, Chen Wenchuan, Zhu Zhimin. Research progress on synthetic nanosilicates in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 340-345.
[13] Zhang Yixin, Li Lei. Development of calcium phosphate scaffolds as drug delivery system in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 346-350.
[14] Wang Yang, Shen Yuqin, Yu Wenwen, Sun Xinhua. Reasearch progress on modified mesoporous bioactive glasses for repairing maxillofacial bone defects [J]. Inter J Stomatol, 2018, 45(1): 32-35.
[15] Zheng Jianmao, Mao Xueli, Ling Junqi.. Research progress on the Mg-based material scaffolds and its application in animal bone tissue engineering [J]. Int J Stomatol, 2015, 42(6): 720-723.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .