Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (6): 647-653.doi: 10.7518/gjkq.2017.06.005

• Microbiology • Previous Articles     Next Articles

Research progress on cyclic di-adenosine monophosphate signaling system and its potential role in oral bacterial pathogenesis

Cheng Xingqun, Xu Xin, Zhou Xuedong, Li Yuqing.   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2016-10-24 Revised:2017-08-06 Online:2017-11-01 Published:2017-11-01
  • Supported by:
    This study was supported by National Natural Science Fundation of China(31200985, 81430011).

Abstract: Cyclic di-adenosine monophosphate(c-di-AMP) is a new signal nucleotide, widely distributed among bacteria and archaea. c-di-AMP plays an important role in the regulation of cell growth, cell wall homeostasis, interaction with host immune system and stress response. Bioinformatic analysis revealed that many oral bacterial genomes could encode the c-di-AMP synthase gene. Here we provide an overview of the synthesis and regulation of c-di-AMP in bacteria, highlighting the currently identified receptor proteins and pathways that are directly or indirectly controlled by c-di-AMP, as well as the recognition of c-di-AMP by the eukaryotic host. This review can serve as an important reference for future research of the c-di-AMP signaling system in oral bacteria.

Key words: cyclic di-adenosine monophosphate, oral bacteria, signaling transduction, pathogenesis

CLC Number: 

  • R781.4+2

TrendMD: 
[1] Witte G, Hartung S, Büttner K, et al. Structural bio-chemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates[J]. Mol Cell, 2008, 30 (2):167-178.
[2] Jenny HC-Y, Don D, Oger J. Synthesis and physical characterization of bis 3’→5’ cyclic dinucleotides (NpNp): RNA polymerase inhibitors[J]. Nucleos Nucleot, 1985, 4(3):377-389.
[3] Bejerano-Sagie M, Oppenheimer-Shaanan Y, Berla-tzky I, et al. A checkpoint protein that scans the chromosome for damage at the start of sporulation in Bacillus subtilis [J]. Cell, 2006, 125(4):679-690.
[4] Römling U. Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea [J]. Sci Signal, 2008, 1(33):pe39.
[5] Punta M, Coggill PC, Eberhardt RY, et al. The Pfam protein families database[J]. Nucleic Acids Res, 2012, 40(Database issue):D290-D301.
[6] Oppenheimer-Shaanan Y, Wexselblatt E, Katzhendler J, et al. c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis [J]. EMBO Rep, 2011, 12(6):594-601.
[7] Luo Y, Helmann JD. Analysis of the role of Bacillus subtilis σ(M) in β-lactam resistance reveals an essen-tial role for c-di-AMP in peptidoglycan homeostasis [J]. Mol Microbiol, 2012, 83(3):623-639.
[8] Mehne FM, Schröder-Tittmann K, Eijlander RT, et al. Control of the diadenylate cyclase CdaS in Baci - llus subtilis : an autoinhibitory domain limits cyclic di-AMP production[J]. J Biol Chem, 2014, 289 (30):21098-21107.
[9] Woodward JJ, Iavarone AT, Portnoy DA. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host typeⅠinterferon response[J]. Science, 2010, 328(5986):1703-1705.
[10] Schwartz KT, Carleton JD, Quillin SJ, et al. Hy-perinduction of host beta interferon by a Listeria monocytogenes strain naturally overexpressing the multidrug efflux pump MdrT[J]. Infect Immun, 2012, 80(4):1537-1545.
[11] Whiteley AT, Garelis NE, Peterson BN, et al. c-di-AMP modulates Listeria monocytogenes central metabolism to regulate growth, antibiotic resistance and osmoregulation[J]. Mol Microbiol, 2017, 104(2): 212-233.
[12] Corrigan RM, Abbott JC, Burhenne H, et al. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and enve-lope stress[J]. PLoS Pathog, 2011, 7(9):e1002217.
[13] Kamegaya T, Kuroda K, Hayakawa Y. Identification of a Streptococcus pyogenes SF370 gene involved in production of c-di-AMP[J]. Nagoya J Med Sci, 2011, 73(1/2):49-57.
[14] Bai Y, Yang J, Zhou X, et al. Mycobacterium tube-rculosis Rv3586(DacA) is a diadenylate cyclase that converts ATP or ADP into c-di-AMP[J]. PLoS One, 2012, 7(4):e35206.
[15] Yang J, Bai Y, Zhang Y, et al. Deletion of the cyclic di-AMP phosphodiesterase gene(cnpB) in Mycobac-terium tuberculosis leads to reduced virulence in a mouse model of infection[J]. Mol Microbiol, 2014, 93(1):65-79.
[16] Smith WM, Pham TH, Lei L, et al. Heat resistance and salt hypersensitivity in Lactococcus lactis due to spontaneous mutation of llmg_1816(gdpP) induced by high-temperature growth[J]. Appl Environ Micro-biol, 2012, 78(21):7753-7759.
[17] Ye M, Zhang JJ, Fang X, et al. DhhP, a cyclic di-AMP phosphodiesterase of Borrelia burgdorferi , is essential for cell growth and virulence[J]. Infect Im-mun, 2014, 82(5):1840-1849.
[18] Jervis AJ, Thackray PD, Houston CW, et al. SigM-responsive genes of Bacillus subtilis and their pro-moters[J]. J Bacteriol, 2007, 189(12):4534-4538.
[19] Cao M, Kobel PA, Morshedi MM, et al. Defining the Bacillus subtilis sigma(W) regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis(ROMA), and transcriptional profiling approaches[J]. J Mol Biol, 2002, 316(3):443-457.
[20] Mehne FM, Gunka K, Eilers H, et al. Cyclic di-AMP homeostasis in Bacillus subtilis : both lack and high level accumulation of the nucleotide are detrimental for cell growth[J]. J Biol Chem, 2013, 288(3):2004- 2017.
[21] Burhenne H, Kaever V. Quantification of cyclic dinucleotides by reversed-phase LC-MS/MS[J]. Me-thods Mol Biol, 2013, 1016:27-37.
[22] Zheng C, Wang J, Luo Y, et al. Highly efficient enzymatic preparation of c-di-AMP using the dia-denylate cyclase DisA from Bacillus thuringiensis [J]. Enzyme Microb Technol, 2013, 52(6/7):319-324.
[23] Rao F, See RY, Zhang D, et al. YybT is a signaling protein that contains a cyclic dinucleotide phospho-diesterase domain and a GGDEF domain with ATPase activity[J]. J Biol Chem, 2010, 285(1):473-482.
[24] Tan E, Rao F, Pasunooti S, et al. Solution structure of the PAS domain of a thermophilic YybT protein homolog reveals a potential ligand-binding site[J]. J Biol Chem, 2013, 288(17):11949-11959.
[25] Zhang L, Li W, He ZG. DarR, a TetR-like transcrip-tional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis [J]. J Biol Chem, 2013, 288(5):3085-3096.
[26] Corrigan RM, Campeotto I, Jeganathan T, et al. Systematic identification of conserved bacterial c-di-AMP receptor proteins[J]. Proc Natl Acad Sci U S A, 2013, 110(22):9084-9089.
[27] Epstein W. The roles and regulation of potassium in bacteria[J]. Prog Nucleic Acid Res Mol Biol, 2003, 7:293-320.
[28] Müller M, Hopfner KP, Witte G. c-di-AMP reco-gnition by Staphylococcus aureus PstA[J]. FEBS Lett, 2015, 589(1):45-51.
[29] Ninfa AJ, Atkinson MR. PⅡ signal transduction proteins[J]. Trends Microbiol, 2000, 8(4):172-179.
[30] Boye E. DisA, a busy bee that monitors chromosome integrity[J]. Cell, 2006, 125(4):641-643.
[31] Eiamphungporn W, Helmann JD. The Bacillus sub - tilis sigma (M) regulon and its contribution to cell envelope stress responses[J]. Mol Microbiol, 2008, 67(4):830-848.
[32] Wang X, Davlieva M, Reyes J, et al. A novel pho-sphodiesterase of the GdpP family modulates cyclic di-AMP levels in response to cell membrane stress in daptomycin-resistant enterococci[J]. Antimicrob Agents Chemother, 2017, 61(3):e01422-16.
[33] Gries CM, Bruger EL, Moormeier DE, et al. Cyclic di-AMP released from Staphylococcus aureus biofilm induces a macrophage typeⅠinterferon response[J]. Infect Immun, 2016, 84(12):3564-3574.
[34] Gundlach J, Rath H, Herzberg C, et al. Second mes-senger signaling in Bacillus subtilis : accumulation of cyclic di-AMP inhibits biofilm formation[J]. Front Microbiol, 2016, 7:804.
[35] Thibessard A, Borges F, Fernandez A, et al. Identi-fication of Streptococcus thermophilus CNRZ368 genes involved in defense against superoxide stress [J]. Appl Environ Microbiol, 2004, 70(4):2220-2229.
[36] Bowman L, Zeden MS, Schuster CF, et al. New insights into the cyclic di-adenosine monophosphate (c-di-AMP) degradation pathway and the require-ment of the cyclic dinucleotide for acid stress resis-tance in Staphylococcus aureus [J]. J Biol Chem, 2016, 291(53):26970-26986.
[37] Cheng X, Zheng X, Zhou X, et al. Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans [J]. Environ Microbiol, 2016, 18(3):904-922.
[38] Peng X, Zhang Y, Bai G, et al. Cyclic di-AMP me-diates biofilm formation[J]. Mol Microbiol, 2016, 99(5):945-959.
[39] 邱伟, 程兴群, 周学东, 等. 牙龈卟啉单胞菌c-di-AMP代谢相关基因的克隆及表达纯化[J]. 华西口腔医学杂志, 2015, 33(6):607-612.
Qiu W, Cheng XQ, Zhou XD, et al. Cloning, expres-sion, and purification of c-di-AMP metabolism-related genes from Porphyromonas gingivalis [J].West Chin J Stomatol, 2015, 33(6):607-612.
[1] Xia Weiyao,Jia Zhonglin. Research progress on the relationship between vitamin and oral clefts [J]. Int J Stomatol, 2023, 50(6): 632-638.
[2] Wang Guanru,Feng Qiang.. Research progress on the role of Porphyromonas gingivalis on promoting the development of Alzheimer ’ s disease [J]. Int J Stomatol, 2022, 49(4): 397-403.
[3] Lei Bin,Chen Ke. Classification and treatment of dentin dysplasia type[J]. Int J Stomatol, 2022, 49(3): 332-336.
[4] Fu Zhuohui,Tan Xuelian,Huang Dingming. Diagnosis and treatment of odontogenic maxillary sinusitis [J]. Int J Stomatol, 2021, 48(3): 367-372.
[5] Zhou Yuxi,Yong Xiangzhi,Jiang Qiaozhi,Tao Renchuan. Oral chronic graft versus host disease [J]. Int J Stomatol, 2019, 46(5): 609-616.
[6] Zheng Zhi, Yan Shiguo. Relationship between herpes virus and periodontitis [J]. Inter J Stomatol, 2018, 45(2): 224-227.
[7] Zhang Feng, Ouyang Shaobo, Liao Lan. Research progress on the pathogenesis of non-syndromic tooth agenesis [J]. Inter J Stomatol, 2018, 45(2): 219-223.
[8] Li Sijie1, Xiao Xue2, Zhao Wei1. Research progress on the pathogenesis of ectodermal dysplasia syndrome [J]. Inter J Stomatol, 2017, 44(2): 244-248.
[9] Zhou Shuangshuang, Zheng Xin, Zhou Xuedong, Xu Xin. Relationship of alkali production by plaque biofilm and dental caries [J]. Inter J Stomatol, 2016, 43(5): 573-577.
[10] Wei Bin, Sun Guowen. Mechanism and treatment of bisphosphonate-related osteonecrosis of the jaw [J]. Inter J Stomatol, 2016, 43(4): 445-448.
[11] Dai Qingyun, Cui Yuan, Feng Hui, Jiang Lu. Research progress on the etiology and pathogenesis of burning mouth syndrome [J]. Inter J Stomatol, 2015, 42(1): 54-58.
[12] Zhang Beibei 1,Zhao Lijuan 2 ..
Research progress on the mechanisms for the social psychosocial factors and dental caries
[J]. Inter J Stomatol, 2013, 40(2): 245-248.
[13] Yu Sainan, Du Xi..
Status and advance of idiopathic condylar resorption
[J]. Inter J Stomatol, 2013, 40(2): 275-278.
[14] Guo Qiang1,2,Xu Xin1,Zhou Xuedong1.. Oral alkali production and molecular research progress [J]. Inter J Stomatol, 2013, 40(1): 80-85.
[15] Li Xin, Zhu Zhimin.. The relationship between Wnt signaling pathway and mechanotransduction in osteocytes [J]. Inter J Stomatol, 2012, 39(3): 328-331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .