Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (3): 320-324.doi: 10.7518/gjkq.2017.03.014

• Reviews • Previous Articles     Next Articles

Study of the adhesion mechanism of oral Streptococcus mutans based on atomic force microscope

Gai Kuo, Hao Liying, Jiang Li.   

  1. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2016-07-22 Revised:2017-03-12 Online:2017-05-01 Published:2017-05-01
  • Supported by:
    This study was supported by National Natural Science Foundation of China(31200720) and The Planned Science and Technology Project of Sichuan Province(2016FZ0069).

Abstract: Atomic force microscope(AFM) is an ideal tool for detecting the fundamental interactions between bacteria and biomaterials and studying the morphology and mechanics of microsystems including oral Streptococcus mutans. In this paper, the application of AFM in study of the adhesion mechanisms and influencing factors are reviewed, which summarizes the molecular mechanism of the adhesion of oral Streptococcus mutans. Thus, it provides mechanical basis and a new way for studying bacterial adhesion.

Key words: atomic force microscope, Streptococcus mutans, bacterial adhesion

CLC Number: 

  • R37

TrendMD: 
[1] Dufrêne YF. Atomic force microscopy in microbio-logy: new structural and functional insights into the microbial cell surface[J]. MBio, 2014, 5(4):e01314- e01363.
[2] Das T, Sharma PK, Krom BP, et al. Role of eDNA on the adhesion forces between Streptococcus mutans and substratum surfaces: influence of ionic strength and substratum hydrophobicity[J]. Langmuir, 2011, 27(16):10113-10118.
[3] Dorobantu LS, Gray MR. Application of atomic force microscopy in bacterial research[J]. Scanning, 2010, 32(2):74-96.
[4] Louise Meyer R, Zhou X, Tang L, et al. Immobilisa-tion of living bacteria for AFM imaging under phy-siological conditions[J]. Ultramicroscopy, 2010, 110 (11):1349-1357.
[5] Lonergan NE, Britt LD, Sullivan CJ. Immobilizing live Escherichia coli for AFM studies of surface dynamics[J]. Ultramicroscopy, 2014, 137:30-39.
[6] Kang S, Elimelech M. Bioinspired single bacterial cell force spectroscopy[J]. Langmuir, 2009, 25(17): 9656-9659.
[7] Stukalov O, Korenevsky A, Beveridge TJ, et al. Use of atomic force microscopy and transmission elec-tron microscopy for correlative studies of bacterial capsules[J]. Appl Environ Microbiol, 2008, 74(17): 5457-5465.
[8] Suo Z, Yang X, Deliorman M, et al. Capture eff-iciency of Escherichia coli in fimbriae-mediated immunoimmobilization[J]. Langmuir, 2012, 28(2): 1351-1359.
[9] Potthoff E, Ossola D, Zambelli T, et al. Bacterial adhesion force quantification by fluidic force micro-scopy[J]. Nanoscale, 2015, 7(9):4070-4079.
[10] Cross SE, Kreth J, Zhu L, et al. Atomic force mic-roscopy study of the structure-function relationships of the biofilm-forming bacterium Streptococcus mutans [J]. Nanotechnology, 2006, 17(4):S1-S7.
[11] Busscher HJ, Van De Belt-Gritter B, Dijkstra RJ, et al. Intermolecular forces and enthalpies in the ad-hesion of Streptococcus mutans and an antigen Ⅰ/Ⅱ- deficient mutant to laminin films[J]. J Bacteriol, 2007, 189(8):2988-2995.
[12] Mei L, Van Der Mei HC, Ren Y, et al. Poisson ana-lysis of streptococcal bond strengthening on stainless steel with and without a salivary conditioning film [J]. Langmuir, 2009, 25(11):6227-6231.
[13] Mei L, Busscher HJ, Van Der Mei HC, et al. Oral bacterial adhesion forces to biomaterial surfaces constituting the bracket-adhesive-enamel junction in orthodontic treatment[J]. Eur J Oral Sci, 2009, 117 (4):419-426.
[14] Zheng P, Cao Y, Bu T, et al. Single molecule force spectroscopy reveals that electrostatic interactions affect the mechanical stability of proteins[J]. Bio-phys J, 2011, 100(6):1534-1541.
[15] Larson MR, Rajashankar KR, Crowley PJ, et al. Crystal structure of the C-terminal region of Strep-tococcus mutans antigen Ⅰ/Ⅱ and characterization of salivary agglutinin adherence domains[J]. J Biol Chem, 2011, 286(24):21657-21666.
[16] Guo L, Wu T, Hu W, et al. Phenotypic characteriza-tion of the foldase homologue PrsA in Streptococcus mutans [J]. Mol Oral Microbiol, 2013, 28(2):154- 165.
[17] Matsumoto-Nakano M, Nagayama K, Kitagori H, et al. Inhibitory effects of Oenothera biennis(evening primrose) seed extract on Streptococcus mutans and S. mutans -induced dental caries in rats[J]. Caries Res, 2011, 45(1):56-63.
[18] Sullan RM, Li JK, Crowley PJ, et al. Binding forces of Streptococcus mutans P1 adhesin[J]. ACS Nano, 2015, 9(2):1448-1460.
[19] Klein MI, Hwang G, Santos PH, et al. Streptococcus mutans -derived extracellular matrix in cariogenic oral biofilms[J]. Front Cell Infect Microbiol, 2015, 5:10.
[20] Heim KP, Crowley PJ, Long JR, et al. An intramo-lecular lock facilitates folding and stabilizes the tertiary structure of Streptococcus mutans adhesin P1[J]. Proc Natl Acad Sci U S A, 2014, 111(44): 15746-15751.
[21] Bowen WH, Koo H. Biology of Streptococcus mutans -derived glucosyltransferases: role in extrace-llular matrix formation of cariogenic biofilms[J]. Caries Res, 2011, 45(1):69-86.
[22] Wang C, Zhao Y, Zheng S, et al. Effect of enamel morphology on nanoscale adhesion forces of strep-tococcal bacteria: an AFM study[J]. Scanning, 2015, 37(5):313-321.
[23] Verran J, Jackson S, Coulthwaite L, et al. The effect of dentifrice abrasion on denture topography and the subsequent retention of microorganisms on abraded surfaces[J]. J Prosthet Dent, 2014, 112(6):1513- 1522.
[24] Mei L, Busscher HJ, Van Der Mei HC, et al. In-fluence of surface roughness on streptococcal adhe-sion forces to composite resins[J]. Dent Mater, 2011, 27(8):770-778.
[25] Pita PP, Rodrigues JA, Ota-Tsuzuki C, et al. Oral Streptococci biofilm formation on different implant surface topographies[J]. Biomed Res Int, 2015, 2015:159625.
[26] Hsiao SW, Venault A, Yang HS, et al. Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer-concomitant effects of surface topography and surface chemistry on attachment of live bacteria[J]. Colloids Surf B Bioin-terfaces, 2014, 118:254-260.
[27] Ionescu A, Brambilla E, Wastl DS, et al. Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites [J]. J Mater Sci Mater Med, 2015, 26(1):5372.
[28] Loskill P, Zeitz C, Grandthyll S, et al. Reduced adhesion of oral bacteria on hydroxyapatite by fluo-ride treatment[J]. Langmuir, 2013, 29(18):5528- 5533.
[1] Gong Tao,Li Yuqing,Zhou Xuedong.. Research progress on sugar transporter and regulatory mechanisms in Streptococcus mutans [J]. Int J Stomatol, 2022, 49(5): 506-510.
[2] Li Shanshan,Yang Fang. Research progress on the relationship between Streptococcus mutans and Candida albicans in caries [J]. Int J Stomatol, 2022, 49(4): 392-396.
[3] Wang Rui,Gai Kuo,Liu Mengqi,Jiang Li. Role of atomic force microscopy in research on microbial adhesion force [J]. Int J Stomatol, 2019, 46(6): 687-692.
[4] Xu Feng,Yi Zhang,Menghong Li,Nan Liu,Liuyi Wang,Min. Hu. Research progress on the influence of removable clear aligners on periodontal health [J]. Inter J Stomatol, 2019, 46(2): 166-170.
[5] Mengqi Liu,Kuo Gai,Li Jiang. Research progress on oral implant materials with antimicrobial properties [J]. Inter J Stomatol, 2018, 45(5): 516-521.
[6] Jing Wang,Yan Wang,Chuandong Wang,Ruijie Huang,Yan Tian,Wei Hu,Jing Zou. Application of liquorice and its extract to the prevention and treatment of oral infections and associated diseases [J]. Inter J Stomatol, 2018, 45(5): 546-552.
[7] Liu Shiyu, He Jinzhi, Li Mingyun.. Saccharomyces albicans: its dental caries correlation and mechanism [J]. Inter J Stomatol, 2017, 44(1): 103-107.
[8] Liu Kun, Hou Benxiang.. Biological activity of Enterococcus faecalis and Streptococcus mutans lipoteichoic acid [J]. Inter J Stomatol, 2017, 44(1): 118-124.
[9] Zhang Ying, Li Mingyong, Huo Li, Meng Yuan. Biosynthesis of autoinducer-2 and determination of its bioactivity in vitro [J]. Inter J Stomatol, 2016, 43(5): 519-523.
[10] Zhao Xingfu, Jiang Shan, Huang Xiaojing, Yan Fuhua. Differential expression of surface-associated proteins in clinical isolations of Streptococcus mutans [J]. Inter J Stomatol, 2016, 43(3): 273-277.
[11] Wang Yizhou, Zhang Yaqi, Niu Xuewei, Zhang Zhimin. The groE operon of Streptococcus mutans with its expression and regulation [J]. Inter J Stomatol, 2016, 43(3): 348-351.
[12] Shi Jing, Yan Zhengbin, Hou Jingqiu, Peng Hui. Influence of bracketless invisible aligner technique and conventional technique on the number of Streptococcus mutans and Porphyromonas gingivalis [J]. Inter J Stomatol, 2016, 43(2): 151-154.
[13] Liu Yi1, Fei Wei1, Wang Lina2, Zhang Siyu3, Wang Yanjun1, Wu Hongkun4.. Effects of synthetic antimicrobial decapeptide on the growth and structure of Streptococcus mutans biofilm [J]. Inter J Stomatol, 2015, 42(4): 401-405.
[14] Song Ying, Zou Ling.. Structure, function, and control strategies of collagen and laminin-binding protein [J]. Inter J Stomatol, 2015, 42(4): 466-470.
[15] Zhang Jianying, Ling Junqi. Function of surface protein antigen P in the biofilm formation of Streptococcus mutans [J]. Inter J Stomatol, 2015, 42(1): 111-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .