Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (2): 244-248.doi: 10.7518/gjkq.2017.02.026

• Reviews • Previous Articles    

Research progress on the pathogenesis of ectodermal dysplasia syndrome

Li Sijie, Xiao Xue, Zhao Wei   

  1. 1. Dept. of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China;
    2. Dept. of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2016-07-19 Online:2017-03-01 Published:2017-03-01
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81671004), Key Project of Shanghai Municipal Commission of Health and Family Flanning(2014035), Natural Science Foundation of Shanghai(16ZR1419000), Shanghai Jiao Tong University Biomedical Engineering Cross Research Foundation(YG2015MS03) and Shanghai Summit &Plateau Disciplines(2016).

Abstract: Ectodermal dysplasia(ED) syndrome is a group of inherited disorders that share primary defects in ectodermal tissue development. ED is characterized by abnormal development of hair, nails, sweat glands, and teeth. ED is caused by certain chromosomal mutations, and to date, more than 200 causative mutations have been reported. The genes that encode proteins with different functions are located in different chromosomes or positions. Each syndrome involves a different combination of symptoms and is unique because of its heterozygous mutation pattern. This paper describes and discusses the pathogenesis and therapeutic prospects of this hereditary disorder to improve the clinical knowledge of the molecular basis of ED and proceed with genetic treatments in ED patients.

Key words: ectodermal dysplasia, hereditary disease, pathogenesis, gene mutation

CLC Number: 

  • Q754

TrendMD: 
[1] Christodoulou MI, Kapsogeorgou EK, Moutsopoulos HM. Characteristics of the minor salivary gland in-filtrates in Sjögren’s syndrome[J]. J Autoimmun, 2010, 34(4):400-407.
[2] Bettelli E, Korn T, Oukka M, et al. Induction and effector functions of Th17 cells[J]. Nature, 2008, 453(7198):1051-1057.
[3] Maehara T, Moriyama M, Hayashida JN, et al. Se-lective localization of T helper subsets in labial salivary glands from primary Sjögren’s syndrome patients[J]. Clin Exp Immunol, 2012, 169(2):89-99.
[4] Moriyama M, Hayashida JN, Toyoshima T, et al. Cytokine/chemokine profiles contribute to unders-tanding the pathogenesis and diagnosis of primary Sjögren’s syndrome[J]. Clin Exp Immunol, 2012, 169(1):17-26.
[5] Youinou P, Jamin C. The weight of interleukin-6 in B cell-related autoimmune disorders[J]. J Autoimmun, 2009, 32(3/4):206-210.
[6] Passerini L, Santoni de Sio FR, Roncarolo MG, et al. Forkhead box P3: the peacekeeper of the immune system[J]. Int Rev Immunol, 2014, 33(2):129-145.
[7] Ramsdell F, Ziegler SF. FOXP3 and scurfy: how it all began[J]. Nat Rev Immunol, 2014, 14(5):343- 349.
[8] Kawanami T, Sawaki T, Sakai T, et al. Skewed production of IL-6 and TGFβ by cultured salivary gland epithelial cells from patients with Sjögren’s syndrome[J]. PLoS One, 2012, 7(10):e45689.
[9] Youinou P, Pers JO. Disturbance of cytokine net-works in Sjögren’s syndrome[J]. Arthritis Res Ther, 2011, 13(4):227.
[10] Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases [J]. Autoimmun Rev, 2014, 13(6):668-677.
[11] Benedetti G, Miossec P. Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheu-matoid arthritis[J]. Eur J Immunol, 2014, 44(2): 339-347.
[12] Chen DY, Chen YM, Wen MC, et al. The potential role of Th17 cells and Th17-related cytokines in the pathogenesis of lupus nephritis[J]. Lupus, 2012, 21 (13):1385-1396.
[13] Shao S, He F, Yang Y, et al. Th17 cells in type 1 diabetes[J]. Cell Immunol, 2012, 280(1):16-21.
[14] Nguyen CQ, Yin H, Lee BH, et al. Pathogenic effect of interleukin-17A in induction of Sjögren’s synd-rome-like disease using adenovirus-mediated gene transfer[J]. Arthritis Res Ther, 2010, 12(6):R220.
[15] Lin X, Rui K, Deng J, et al. Th17 cells play a critical role in the development of experimental Sjögren’s syndrome[J]. Ann Rheum Dis, 2015, 74(6):1302- 1310.
[16] Ciccia F, Guggino G, Rizzo A, et al. Potential in-volvement of IL-22 and IL-22-producing cells in the inflamed salivary glands of patients with Sjögren’s syndrome[J]. Ann Rheum Dis, 2012, 71(2):295-301.
[17] Nguyen CQ, Yin H, Lee BH, et al. IL17: potential therapeutic target in Sjögren’s syndrome using ade-novirus-mediated gene transfer[J]. Lab Invest, 2011, 91(1):54-62.
[18] Maehara T, Moriyama M, Nakashima H, et al. Inter- leukin-21 contributes to germinal centre formation and immunoglobulin G4 production in IgG4-related dacryoadenitis and sialoadenitis, so-called Mikulicz’s disease[J]. Ann Rheum Dis, 2012, 71(12):2011- 2019.
[19] Kang KY, Kim HO, Kwok SK, et al. Impact of inter-leukin-21 in the pathogenesis of primary Sjögren’s syndrome: increased serum levels of interleukin-21 and its expression in the labial salivary glands[J]. Arthritis Res Ther, 2011, 13(5):R179.
[20] Singh N, Cohen PL. The T cell in Sjögren’s syn-drome: force majeure, not spectateur[J]. J Autoim-mun, 2012, 39(3):229-233.
[21] Ettinger R, Sims GP, Fairhurst AM, et al. IL-21 in-duces differentiation of human naive and memory B cells into antibody-secreting plasma cells[J]. J Im-munol, 2005, 175(12):7867-7879.
[22] Lavoie TN, Stewart CM, Berg KM, et al. Expression of interleukin-22 in Sjögren’s syndrome: significant correlation with disease parameters[J]. Scand J Im-munol, 2011, 74(4):377-382.
[23] Yoshimura A, Wakabayashi Y, Mori T. Cellular and molecular basis for the regulation of inflammation by TGF-β[J]. J Biochem, 2010, 147(6):781-792.
[24] Zhou L, Lopes JE, Chong MM, et al. TGF-beta-in-duced Foxp3 inhibits T H 17 cell differentiation by antagonizing RORγt function[J]. Nature, 2008, 453(7192):236-240.
[1] Xia Weiyao,Jia Zhonglin. Research progress on the relationship between vitamin and oral clefts [J]. Int J Stomatol, 2023, 50(6): 632-638.
[2] Zhu Xingrong,Liao Lan. Research progress on oral clinical diagnosis and treatment of ectodermal dysplasia syndrome [J]. Int J Stomatol, 2022, 49(6): 737-742.
[3] Wang Guanru,Feng Qiang.. Research progress on the role of Porphyromonas gingivalis on promoting the development of Alzheimer ’ s disease [J]. Int J Stomatol, 2022, 49(4): 397-403.
[4] Lei Bin,Chen Ke. Classification and treatment of dentin dysplasia type[J]. Int J Stomatol, 2022, 49(3): 332-336.
[5] Qian Ying,Gong Jiaxing,Yu Mengfei,Liu Yu,Wei Dong,Zhu Ziyu,Lu Kejie,Wang Huiming. Diagnosis and treatment of ameloblastoma from molecular biology perspective [J]. Int J Stomatol, 2021, 48(5): 570-578.
[6] Fu Zhuohui,Tan Xuelian,Huang Dingming. Diagnosis and treatment of odontogenic maxillary sinusitis [J]. Int J Stomatol, 2021, 48(3): 367-372.
[7] He Youya,Ji Tong. Research advances in SMO gene mutation in ameloblastoma [J]. Int J Stomatol, 2020, 47(1): 63-67.
[8] Zhou Yuxi,Yong Xiangzhi,Jiang Qiaozhi,Tao Renchuan. Oral chronic graft versus host disease [J]. Int J Stomatol, 2019, 46(5): 609-616.
[9] Zheng Zhi, Yan Shiguo. Relationship between herpes virus and periodontitis [J]. Inter J Stomatol, 2018, 45(2): 224-227.
[10] Zhang Feng, Ouyang Shaobo, Liao Lan. Research progress on the pathogenesis of non-syndromic tooth agenesis [J]. Inter J Stomatol, 2018, 45(2): 219-223.
[11] Cheng Xingqun, Xu Xin, Zhou Xuedong, Li Yuqing.. Research progress on cyclic di-adenosine monophosphate signaling system and its potential role in oral bacterial pathogenesis [J]. Inter J Stomatol, 2017, 44(6): 647-653.
[12] Lu Shouyi, Gao Qingping, Zhang Xiaoyu, He Fangqi, Chen Yunjia, Zeng Tingwen, Yu Huimin. Mutation detection and analysis in EDA gene in four hypohidrotic ectodermal dysplasia families [J]. Inter J Stomatol, 2017, 44(3): 288-293.
[13] Wei Bin, Sun Guowen. Mechanism and treatment of bisphosphonate-related osteonecrosis of the jaw [J]. Inter J Stomatol, 2016, 43(4): 445-448.
[14] Liu Min, Wang Xuxia. Rat sarcoma virus gene in oral squamous cell carcinoma [J]. Inter J Stomatol, 2015, 42(2): 237-242.
[15] Dai Qingyun, Cui Yuan, Feng Hui, Jiang Lu. Research progress on the etiology and pathogenesis of burning mouth syndrome [J]. Inter J Stomatol, 2015, 42(1): 54-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .