Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (1): 108-113.doi: 10.7518/gjkq.2017.01.022

• ·Reviews· • Previous Articles     Next Articles

Role and mechanism of microRNA in osteogenic differentiation

Liu Runheng, Liu Yudong, Chen Zhuofan.   

  1. Dept. of Implantation, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2016-02-11 Online:2017-01-01 Published:2017-01-01

Abstract: The problem of insufficient bone usually occurs during oral implantology treatment. The use of bone substitute materials is one of the most important methods to reconstruct bone defects clinically. Therefore, the properties and molecular mechanisms of these bone substitute materials have been a controversial topic in research. MicroRNA(miRNA) is a short, non-coding RNA. It regulates cell differentiation, proliferation, apoptosis, and other pathophysiological processes by post-transcription. In addition, miRNA can regulate the dynamic remodeling of bone tissue by affecting the expression of osteogenic factors and the activation of osteogenic signal transduction pathway. This paper reviews the role of miRNA in osterix, core binding factor α1, Smad, and transforming growth factor-β. The regulating function of miRNA in the signal transduction pathways of bone morphogenetic protein, wingless-type mice mammary tumor virus integration site family, mitogen-activated protein kinase, and adipogenesis is investigated. The relation of miRNA with dental materials and its application in repairing bone defects are also reviewed.

Key words: microRNA, osteogenic differentiation, regulatory factor of osteogenic differentiation, signal transduction pathway

CLC Number: 

  • Q786

TrendMD: 
[1] Sriram M, Sainitya R, Kalyanaraman V, et al. Bio-materials mediated microRNA delivery for bone tissue engineering[J]. Int J Biol Macromol, 2015, 74: 404-412.
[2] Dong S, Yang B, Guo H, et al. MicroRNAs regulate osteogenesis and chondrogenesis[J]. Biochem Bio-phys Res Commun, 2012, 418(4):587-591.
[3] Hutvágner G, McLachlan J, Pasquinelli AE, et al. A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA[J]. Science, 2001, 293(5531):834-838.
[4] Bartel DP. MicroRNAs: genomics, biogenesis, me-chanism, and function[J]. Cell, 2004, 116(2):281- 297.
[5] Hassan MQ, Tye CE, Stein GS, et al. Non-coding RNAs: epigenetic regulators of bone development and homeostasis[J]. Bone, 2015, 81:746-756.
[6] Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone for-mation[J]. Cell, 2002, 108(1):17-29.
[7] Baglìo SR, Devescovi V, Granchi D, et al. Micro-RNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic dif-ferentiation reveals osterix regulation by miR-31[J]. Gene, 2013, 527(1):321-331.
[8] Shi K, Lu J, Zhao Y, et al. MicroRNA-214 suppre-sses osteogenic differentiation of C2C12 myoblast cells by targeting osterix[J]. Bone, 2013, 55(2):487- 494.
[9] Li E, Zhang J, Yuan T, et al. MiR-143 suppresses osteogenic differentiation by targeting osterix[J]. Mol Cell Biochem, 2014, 390(1/2):69-74.
[10] Liu H, Sun Q, Wan C, et al. MicroRNA-338-3p regulates osteogenic differentiation of mouse bone marrow stromal stem cells by targeting Runx2 and Fgfr2[J]. J Cell Physiol, 2014, 229(10):1494-1502.
[11] Zuo B, Zhu J, Li J, et al. microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2[J]. J Bone Miner Res, 2015, 30(2):330-345.
[12] Panchision DM, Pickel JM, Studer L, et al. Sequen-tial actions of BMP receptors control neural pre-cursor cell production and fate[J]. Genes Dev, 2001, 15(16):2094-2110.
[13] Kato RB, Roy B, de Oliveira FS, et al. Nanotopo-graphy directs mesenchymal stem cells to osteoblast lineage through regulation of microRNA-SMAD-BMP-2 circuit[J]. J Cell Physiol, 2014, 229(11): 1690-1696.
[14] Wu T, Zhou H, Hong Y, et al. miR-30 family mem-bers negatively regulate osteoblast differentiation[J]. J Biol Chem, 2012, 287(10):7503-7511.
[15] Krzeszinski JY, Wei W, Huynh H, et al. miR-34a blocks osteoporosis and bone metastasis by inhibi-ting osteoclastogenesis and Tgif2[J]. Nature, 2014, 512(7515):431-435.
[16] Moorthi A, Vimalraj S, Avani C, et al. Expression of microRNA-30c and its target genes in human osteo-blastic cells by nano-bioglass ceramic-treatment[J]. Int J Biol Macromol, 2013, 56:181-185.
[17] Kureel J, Dixit M, Tyagi AM, et al. miR-542-3p suppresses osteoblast cell proliferation and differen-tiation, targets BMP-7 signaling and inhibits bone formation[J]. Cell Death Dis, 2014, 5:e1050.
[18] Hupkes M, Sotoca AM, Hendriks JM, et al. Micro-RNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells[J]. BMC Mol Biol, 2014, 15:1.
[19] Liao YH, Chang YH, Sung LY, et al. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b[J]. Bioma-terials, 2014, 35(18):4901-4910.
[20] Kieslinger M, Folberth S, Dobreva G, et al. EBF2 regulates osteoblast-dependent differentiation of osteoclasts[J]. Dev Cell, 2005, 9(6):757-767.
[21] Wang T, Xu Z. miR-27 promotes osteoblast diffe-rentiation by modulating Wnt signaling[J]. Biochem Biophys Res Commun, 2010, 402(2):186-189.
[22] Meng YB, Li X, Li ZY, et al. microRNA-21 promotes osteogenic differentiation of mesenchymal stem cells by the PI3K/β-catenin pathway[J]. J Orthop Res, 2015, 33(7):957-964.
[23] Wang Q, Cai J, Cai XH, et al. miR-346 regulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting the Wnt/β-catenin pathway[J]. PLoS ONE, 2013, 8(9):e72266.
[24] Vimalraj S, Selvamurugan N. MicroRNAs expre-ssion and their regulatory networks during mesen-chymal stem cells differentiation toward osteoblasts [J]. Int J Biol Macromol, 2014, 66:194-202.
[25] Zhang Z, Wang J, Lü X. An integrated study of natural hydroxyapatite-induced osteogenic dif-ferentiation of mesenchymal stem cells using tran-scriptomics, proteomics and microRNA analyses[J]. Biomed Mater, 2014, 9(4):045005.
[26] Mei Y, Bian C, Li J, et al. miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation[J]. J Cell Biochem, 2013, 114(6): 1374-1384.
[27] Elabd C, Basillais A, Beaupied H, et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis[J]. Stem Cells, 2008, 26(9):2399-2407.
[28] Li W, Yuan Y, Huang L, et al. Metformin alters the expression profiles of microRNAs in human pan-creatic cancer cells[J]. Diabetes Res Clin Pract, 2012, 96(2):187-195.
[29] Sun J, Wang Y, Li Y, et al. Downregulation of PPARγ by miR-548d-5p suppresses the adipogenic differentiation of human bone marrow mesenchymal stem cells and enhances their osteogenic potential[J]. J Transl Med, 2014, 12:168.
[30] Li CJ, Cheng P, Liang MK, et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation[J]. J Clin Invest, 2015, 125 (4):1509-1522.
[31] Palmieri A, Pezzetti F, Brunelli G, et al. Anorganic bovine bone(Bio-Oss) regulates miRNA of osteo-blast-like cells[J]. Int J Periodontics Restorative Dent, 2010, 30(1):83-87.
[32] Palmieri A, Pezzetti F, Avantaggiato A, et al. Ti-tanium acts on osteoblast translational process[J]. J Oral Implantol, 2008, 34(4):190-195.
[33] Palmieri A, Pezzetti F, Brunelli G, et al. Zirconium oxide regulates RNA interfering of osteoblast-like cells[J]. J Mater Sci Mater Med, 2008, 19(6):2471- 2476.
[34] Chakravorty N, Ivanovski S, Prasadam I, et al. The microRNA expression signature on modified ti-tanium implant surfaces influences genetic me-chanisms leading to osteogenic differentiation[J]. Acta Biomater, 2012, 8(9):3516-3523.
[35] Wang Z, Zhang D, Hu Z, et al. MicroRNA-26a-modified adipose-derived stem cells incorporated with a porous hydroxyapatite scaffold improve the repair of bone defects[J]. Mol Med Rep, 2015, 12(3): 3345-3350.
[36] Deng Y, Zhou H, Gu P, et al. Repair of canine me-dial orbital bone defects with miR-31-modified bone marrow mesenchymal stem cells[J]. Invest Ophthal-mol Vis Sci, 2014, 55(9):6016-6023.
[37] Li KC, Chang YH, Yeh CL, et al. Healing of osteo-porotic bone defects by baculovirus-engineered bone marrow-derived MSCs expressing MicroRNA sponges[J]. Biomaterials, 2016, 74:155-166.
(本文采编 王晴)
[1] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[2] Li Liheng,Wang Rui,Wang Xiaoming,Zhang Zhiyi,Zhang Xuan,An Feng,Wang Qin,Zhang Fan. Effects of circular RNA hsa_circ_0085576 on cell migration and invasion of oral squamous cell carcinoma by regulating the microRNA-498/B-cell-specific Moloney murine leukemia virus integration site 1 axis [J]. Int J Stomatol, 2024, 51(1): 60-67.
[3] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[4] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[5] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[6] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[7] Qian Suting,Ding Lingmin,Ji Yaning,Lin Jun.. Differential expression of microRNA in gingival crevicular fluid of periodontitis and its regulatory mechanism on periodontitis [J]. Int J Stomatol, 2022, 49(3): 349-355.
[8] Ai Xiaoqing,Dou Lei,Qiao Xin,Yang Deqin. MicroRNA profile of exosomes derived from dental pulp stromal cells under three-dimensional culture condition [J]. Int J Stomatol, 2022, 49(1): 27-36.
[9] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[10] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[11] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[12] Sun Jianwei,Lei Lihong,Tan Jingyi,Chen Lili. Regulation of osteoimmunology by MicroRNA 155 and research progress of its possible mechanism in periodontitis [J]. Int J Stomatol, 2020, 47(5): 607-615.
[13] Yang Yeqing,Chen Ming,Wu Buling. Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 257-262.
[14] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
[15] Wang Runting,Fang Fuchun. Progress in research of non-coding RNAs in osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(2): 138-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .