Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (1): 92-97.doi: 10.7518/gjkq.2017.01.019

• ·Reviews· • Previous Articles     Next Articles

Research progress on anti-caries dental adhesives

Chen Hui, Cheng Lei.   

  1. State Key Laboratory of Oral Diseases, Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2016-04-24 Online:2017-01-01 Published:2017-01-01

Abstract: Composite resin and adhesive system are frequently used in repairing dental defects and improving the teeth color and appearance. However, these materials have drawbacks of lack of effective antibacterial properties and limited effectiveness of long-term repair because of secondary caries. In recent years, bonding agents with antibacterial ingredients exhibit certain antimicrobial functions, good mechanical properties, and enhanced dentine remineralization. Hence, the use of such agents is becoming a controversial topic in research. This paper reviews and summarizes the classification of anti-caries adhesive materials and the recent development of antibacterial and mineralized adhesives.

Key words: adhesive, anti-caries, antibacterial, remineralization, dental restoration, quaternary ammonium salt

CLC Number: 

  • R783.1

TrendMD: 
[1] van Landuyt KL, Snauwaert J, De Munck J, et al. Systematic review of the chemical composition of contemporary dental adhesives[J]. Biomaterials, 2007, 28(26):3757-3785.
[2] Ikemura K, Endo T. A review of our development of dental adhesives—effects of radical polymerization initiators and adhesive monomers on adhesion[J]. Dent Mater J, 2010, 29(2):109-121.
[3] Nowicka A, Buczkowska-Radlińska J, Lipski M, et al. Response of dental pulp to self-etching adhesive systems used in indirect capping. A literature review [J]. Ann Acad Med Stetin, 2009, 55(1):79-83.
[4] Cocco AR, de Oliveira da Rosa WL, da Silva AF, et al. A systematic review about antibacterial monomers used in dental adhesive systems: current status and further prospects[J]. Dent Mater, 2015, 31(11):1345- 1362.
[5] Barcellos DC, Batista GR, Pucci CR, et al. Longitu-dinal evaluation of bond strength to enamel of dental adhesive systems associated with Nd:YAG laser[J]. Oper Dent, 2015, 40(3):E122-E131.
[6] Pinna R, Bortone A, Sotgiu G, et al. Clinical evalua-tion of the efficacy of one self-adhesive composite in dental hypersensitivity[J]. Clin Oral Invest, 2015, 19 (7):1663-1672.
[7] Zhang K, Wang S, Zhou X, et al. Effect of antibac-terial dental adhesive on multispecies biofilms for-mation[J]. J Dent Res, 2015, 94(4):622-629.
[8] Fan L, Yang J, Wu H, et al. Preparation and charac-terization of quaternary ammonium chitosan hydrogel with significant antibacterial activity[J]. Int J Biol Macromol, 2015, 79:830-836.
[9] He J, Söderling E, Lassila LV, et al. Preparation of antibacterial and radio-opaque dental resin with new polymerizable quaternary ammonium monomer[J]. Dent Mater, 2015, 31(5):575-582.
[10] Sekhavat Pour Z, Makvandi P, Ghaemy M. Perfor-mance properties and antibacterial activity of cross-linked films of quaternary ammonium modified star-ch and poly(vinyl alcohol)[J]. Int J Biol Macromol, 2015, 80:596-604.
[11] Shtyrlin NV, Sapozhnikov SV, Koshkin SA, et al. Synthesis and antibacterial activity of novel quater-nary ammonium pyridoxine derivatives[J]. Med Chem, 2015, 11(7):656-665.
[12] Zanini S, Polissi A, Maccagni EA, et al. Develop-ment of antibacterial quaternary ammonium silane coatings on polyurethane catheters[J]. J Colloid In-terface Sci, 2015, 451:78-84.
[13] Jedrychowski JR, Caputo AA, Kerper S. Antibacterial and mechanical properties of restorative materials combined with chlorhexidines[J]. J Oral Rehabil, 1983, 10(5):373-381.
[14] Addy M, Thaw M. In vitro studies into the release of chlorhexidine acetate, prednisolone sodium phos-phate, and prednisolone alcohol from cold cure den-ture base acrylic[J]. J Biomed Mater Res, 1982, 16(2):145-157.
[15] Wilson SJ, Wilson HJ. The release of chlorhexidine from modified dental acrylic resin[J]. J Oral Rehabil, 1993, 20(3):311-319.
[16] Addy M. In vitro studies into the use of denture base and soft liner materials as carriers for drugs in the mouth[J]. J Oral Rehabil, 1981, 8(2):131-142.
[17] Wen ZT, Suntharaligham P, Cvitkovitch DG, et al. Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and bio-film formation[J]. Infect Immun, 2005, 73(1):219- 225.
[18] Chen C, Weir MD, Cheng L, et al. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles[J]. Dent Mater, 2014, 30(8):891-901.
[19] Cheng L, Weir MD, Xu HH, et al. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles[J]. Dent Mater, 2012, 28(5):561-572.
[20] Cheng L, Weir MD, Xu HHK, et al. Antibacterial and physical properties of calcium-phosphate and calcium-fluoride nanocomposites with chlorhexidine [J]. Dent Mater, 2012, 28(5):573-583.
[21] Xu X, Ling L, Wang R, et al. Formulation and characterization of a novel fluoride-releasing dental composite[J]. Dent Mater, 2006, 22(11):1014-1023.
[22] Ling L, Xu X, Choi GY, et al. Novel F-releasing composite with improved mechanical properties[J]. J Dent Res, 2009, 88(1):83-88.
[23] Xu HH, Sun L, Weir MD, et al. Nano DCPA-whisker composites with high strength and Ca and PO 4 release[J]. J Dent Res, 2006, 85(8):722-727.
[24] Xu HH, Weir MD, Sun L, et al. Strong nanocom-posites with Ca, PO 4 , and F release for caries inhibi-tion[J]. J Dent Res, 2010, 89(1):19-28.
[25] Zhang K, Cheng L, Imazato S, et al. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties[J]. J Dent, 2013, 41(5):464-474.
[26] Melo MA, Cheng L, Zhang K, et al. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate[J]. Dent Mater, 2013, 29(2):199-210.
[27] Nato F, Mazzoni A, Gobbi P, et al. CHX-containing adhesive inhibits dentin MMPs: a zymographic assay [J]. Dent Mater, 2010, 26:e13-e14.
[28] 陈美婉, 彭新生, 吴琳娜, 等. 纳米银抗菌剂的研究和应用[J]. 中国消毒学杂志, 2009, 26(4):424-426. Chen MW, Peng XS, Wu LN, et al. Research and application of nano silver antibacterial agent[J]. Chin J Disinfect , 2009, 26(4):424-426.
[29] 胡云睿. 纳米银及其复合抗菌材料的研究[D]. 广州: 华南理工大学, 2013. Hu YR. Study on nano silver and its composite antibacterial materials[D]. Guangzhou: South Chin Univ Technol, 2013.
[30] 宫雪. 载纳米银抗菌复合材料的研究[D]. 兰州: 西北师范大学, 2010. Gong X. Study on nano silver antibacterial com-posite material[D]. Lanzhou: Northwest Normal Univ, 2010.
[31] 曲晨, 刘伟, 荣海钦, 等. 纳米银的生物学特性及其潜在毒性的研究进展[J]. 环境与健康杂志, 2010, 27(9):842-845. Qu C, Liu W, Rong HQ, et al. Research advance on biological features and toxicities of silver nanopar-ticles[J]. J Environ Health, 2010, 27(9):842-845.
[32] Fan C, Chu L, Rawls HR, et al. Development of an antimicrobial resin—a pilot study[J]. Dent Mater, 2011, 27(4):322-328.
[33] Zhang K, Li F, Imazato S, et al. Dual antibacterial agents of nano-silver and 12-methacryloyloxydode-cylpyridinium bromide in dental adhesive to inhibit caries[J]. J Biomed Mater Res Part B Appl Biomater, 2013, 101(6):929-938.
[34] 付春茂, 何大为, 孙新华. 体外复合抗菌粘接剂的抑菌性能测试和银离子释放浓度测试[J]. 口腔医学研究, 2010, 26(3):329-331. Fu CM, He DW, Sun XH. Study on antibacterial properties of antimicrobial compound adhesive and silver ion release concentration in vitro [J]. J Oral Sci Res, 2010, 26(3):329-331.
[35] André CB, Gomes BP, Duque TM, et al. Dentine bond strength and antimicrobial activity evaluation of adhesive systems[J]. J Dent, 2015, 43(4):466-475.
[36] Breschi L, Cammelli F, Visintini E, et al. Influence of chlorhexidine concentration on the durability of etch-and-rinse dentin bonds: a 12-month in vitro study[J]. J Adhes Dent, 2009, 11(3):191-198.
[37] Breschi L, Mazzoni A, Nato F, et al. Chlorhexidine stabilizes the adhesive interface: a 2-year in vitro study[J]. Dent Mater, 2010, 26(4):320-325.
[38] Zhou J, Tan J, Chen L, et al. The incorporation of chlorhexidine in a two-step self-etching adhesive preserves dentin bond in vitro [J]. J Dent, 2009, 37 (10):807-812.
[39] Izutani N, Imazato S, Noiri Y, et al. Antibacterial effects of MDPB against anaerobes associated with endodontic infections[J]. Int Endod J, 2010, 43(8): 637-645.
[40] Giammanco GM, Cumbo EM, Luciani A, et al. In vitro evaluation of the antibacterial activity of cured dentin/enamel adhesive incorporating the antimicro-bial agent MDPB[J]. New Microbiol, 2009, 32(4): 385-390.
[41] Imazato S, Ebi N, Tarumi H, et al. Bactericidal ac-tivity and cytotoxicity of antibacterial monomer MDPB [J]. Biomaterials, 1999, 20(9):899-903.
[42] Zhang K, Cheng L, Wu EJ, et al. Effect of water-ageing on dentine bond strength and anti-biofilm activity of bonding agent containing new monomer dimethylaminododecyl methacrylate[J]. J Dent, 2013, 41(6):504-513.
[43] Cheng L, Weir MD, Limkangwalmongkol P, et al. Tetracalcium phosphate composite containing qua-ternary ammonium dimethacrylate with antibacterial properties[J]. J Biomed Mater Res Part B Appl Biomater, 2012, 100(3):726-734.
[44] 马赛. 两种常用季铵盐型抗菌单体抗菌性能、细胞毒性的比较研究及其细胞毒性机理初探[D]. 西安: 第四军医大学, 2012. Ma S. A comparative study on the antibacterial ac-tivity and cytotoxicity of two commonly used qua-ternary ammonium salts and their cytotoxicity[D]. Xi’an: Fourth Milit Med Univ, 2012.
[45] Imazato S, Torii Y, Takatsuka T, et al. Bactericidal effect of dentin primer containing antibacterial monomer methacryloyloxydodecylpyridinium bro-mide(MDPB) against bacteria in human carious dentin[J]. J Oral Rehabil, 2001, 28(4):314-319.
[46] Imazato S, Kinomoto Y, Tarumi H, et al. Incor-poration of antibacterial monomer MDPB into dentin primer[J]. J Dent Res, 1997, 76(3):768-772.
[47] Imazato S, Ehara A, Torii M, et al. Antibacterial activity of dentine primer containing MDPB after curing[J]. J Dent, 1998, 26(3):267-271.
[48] Imazato S, Kinomoto Y, Tarumi H, et al. Antibac-terial activity and bonding characteristics of an adhe-sive resin containing antibacterial monomer MDPB [J]. Dent Mater, 2003, 19(4):313-319.
[49] 张珂. 新型季铵盐和无定型磷酸钙材料对牙本质粘接系统改性的研究[D]. 北京: 首都医科大学, 2013. Zhang K. Study on the modification of the dentin bonding system with a new type of quaternary ammonium salt and amorphous calcium phosphate [D]. Beijing: Capital Univ Med Sci, 2013.
[50] 梅美, 李晓蕾, 张宁. 新型抗菌性牙本质粘接剂抗菌性和粘接性能的研究[J]. 口腔生物医学, 2014, 5(2):67-70. Mei M, Li XL, Zhang N. Study on the antibacterial property and dentin bond strength of novel dentin bonding agent[J]. Oral Biomedicine, 2014, 5(2):67- 70.
[51] Cheng L, Weir MD, Zhang K, et al. Dental primer and adhesive containing a new antibacterial quater-nary ammonium monomer dimethylaminododecyl methacrylate[J]. J Dent, 2013, 41(4):345-355.
[52] Li F, Weir MD, Chen J, et al. Effect of charge density of bonding agent containing a new qua-ternary ammonium methacrylate on antibacterial and bonding properties[J]. Dent Mater, 2014, 30(4):433- 441.
[53] Li F, Wang P, Weir MD, et al. Evaluation of antibac-terial and remineralizing nanocomposite and ad-hesive in rat tooth cavity model[J]. Acta Biomater, 2014, 10(6):2804-2813.
[54] 马赛. 季铵盐型抗菌单体的生物学性能及其应用于口腔粘接剂的初步研究[D]. 第四军医大学, 2009. Ma S. Preliminary study on biological properties of quaternary ammonium salt type antibacterial mono-mer and its application in oral adhesive[D]. Xi’an: Fourth Milit Med Univ, 2009.
[55] Ferreira L, Pedrini D, Okamoto AC, et al. Bio-chemical and microbiological characteristics of in situ biofilm formed on materials containing fluoride or amorphous calcium phosphate[J]. Am J Dent, 2013, 26(4):207-213.
[56] Comar LP, Souza BM, Gracindo LF, et al. Impact of experimental nano-HAP pastes on bovine enamel and dentin submitted to a pH cycling model[J]. Braz Dent J, 2013, 24(3):273-278.
[57] Baygin O, Tuzuner T, Kusgoz A, et al. Antibacterial effects of fluoride varnish compared with chlor-hexidine plus fluoride in disabled children[J]. Oral Health Prev Dent, 2014, 12(4):373-382.
[58] Randall J, Seow W, Walsh L. Antibacterial activity of fluoride compounds and herbal toothpastes on Streptococcus mutans : an in vitro study[J]. Aust Dent J, 2015, 60(3):368-374.
[59] Sungurtekin-Ekci E, Ozdemir-Ozenen D, Duman S, et al. Antibacterial surface properties of various fluoride-releasing restorative materials in vitro [J]. J Appl Biomater Funct Mater, 2015, 13(2):e169-e173.
[60] 王健平, 孟祥才, 张玉娜, 等. 氟纳米羟基磷灰石对早期釉质龋再矿化影响的研究[J]. 口腔医学研究, 2012, 28(12):1228-1230. Wang JP, Meng XC, Zhang YN, et al. Study of fluo-ride nano hydroxyapatite on remineralization of early enamel caries[J]. J Oral Sci Res, 2012, 28(12): 1228-1230.
[61] Weir MD, Moreau JL, Levine ED, et al. Nanocom-posite containing CaF (2) nanoparticles: thermal cycling, wear and long-term water-aging[J]. Dent Mater, 2012, 28(6):642-652.
[1] Tan Yongzhen,Liang Xinhua. Research progress on the antibacterial mechanism of oral local anesthetics [J]. Int J Stomatol, 2024, 51(1): 74-81.
[2] Wu Sijia,Shu Chang,Wang Yang,Wang Yuan,Deng Shuli,Wang Huiming.. Effect and research progress on root canal infection management of regenerative endodontic procedure in immature permanent teeth [J]. Int J Stomatol, 2023, 50(4): 388-394.
[3] Wang Gang,Chen Zhuo.. Reduction of the risk of caries after interproximal enamel reduction [J]. Int J Stomatol, 2023, 50(4): 395-400.
[4] Gao Yutian,Su Qin. Research and application of electrolyzed-oxidizing water in the field of root canal treatment [J]. Int J Stomatol, 2023, 50(4): 401-406.
[5] Lin Kaifeng,Wang Xinyue,Zou Jing,Zhang Qiong.. Clinical related factors influencing the retention rate of pit and fissure sealant and improvement countermeasures [J]. Int J Stomatol, 2022, 49(6): 699-706.
[6] Wang Qiqiu,Zhi Qinghui.. Research progress on treatments of enamel white spot lesions [J]. Int J Stomatol, 2022, 49(6): 717-723.
[7] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[8] Li Min,Hua Chengge,Jiang Li. Research progress on new technology for improving adhesion properties of zirconia ceramics [J]. Int J Stomatol, 2021, 48(4): 485-490.
[9] Liu Min,Zhang Kuanshou,Liu Qingmei. An update of laser etching tooth tissue in direct adhesive technique [J]. Int J Stomatol, 2021, 48(3): 292-296.
[10] Zhu Junjin,Wang Jian.. Advances in the loading methods of silver nanoparticles on the surface of titanium implants [J]. Int J Stomatol, 2021, 48(3): 334-340.
[11] Wang Huan,Liu Yang,Qi Mengchun,Li Jingyi,Liu Mengnan,Sun Hong. Research progress on the preparation of titanium-based implant surface coatings by micro-arc oxidation [J]. Int J Stomatol, 2020, 47(4): 439-444.
[12] Feng Jin,Wu Hongkun. Research progress on antibacterial dental materials in the treatment of root caries [J]. Int J Stomatol, 2019, 46(4): 475-480.
[13] Yuting Han,Yanru Wu. Research progress on deep margin elevation in tooth defect restorations [J]. Int J Stomatol, 2019, 46(3): 349-355.
[14] Yuhao Liu,Quan Yuan,Shiwen Zhang. Recent research progress on the drug-loaded antibacterial coatings of titanium implants based on covalent grafting [J]. Inter J Stomatol, 2019, 46(2): 228-233.
[15] Siying Tao,Kunneng Liang,Jiyao Li. Research advances in biomimetic peptides promoting tooth remineralization [J]. Inter J Stomatol, 2019, 46(1): 37-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .