Inter J Stomatol ›› 2016, Vol. 43 ›› Issue (3): 333-337.doi: 10.7518/gjkq.2016.03.018

Previous Articles     Next Articles

Effect of sclerostin on cementogenesis and its mechanism

Chen Tian, Bai Ding   

  1. State Key Laboratory of Oral Diseases, Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China) This study was supported by the National Natural Science Foundation of China(11172190, 81371171) and the Doctoral Program Foundation of Institution of Higher Education of China(20130181110013).
  • Received:2015-07-10 Revised:2016-01-15 Online:2016-05-01 Published:2016-05-01

Abstract: Sclerostin, a secreted glycoprotein with a C-terminal cysteine knot-like domain protein, is produced by the osteocytes and has anti-anabolic effects on bone formation. Sclerostin is an antagonist of Wnt signaling pathway by binding to low density lipoprotein receptor-related protein-5/6 receptors and prompting the phosphorylation of β-catenin. Cementum is a specialized substance covering the root of a tooth and a dynamic entity within the periodontium sustaining the firmness of the tooth. Sclerostin has been identified during cementogenesis, in which the underlying mechanism is still obscure. On this basis, providing a comprehensive insight into the interactional and reciprocal molecular mechanism between sclerostin and cementum may facilitate cementogenesis-related tooth development and regeneration.

Key words: cementum, sclerostin, wingless-type mice mammary tumour virus integration site family-β-catenin-signal transduction pathway, molecular mechanism, mineralized tissues, cementum, sclerostin, wingless-type mice mammary tumour virus integration site family-β-catenin-signal transduction pathway, molecular mechanism, mineralized tissues

CLC Number: 

  • Q 51

TrendMD: 
[1] van Bezooijen RL, ten Dijke P, Papapoulos SE, et al. SOST/sclerostin, an osteocyte-derived negative regulator of bone formation[J]. Cytokine Growth Factor Rev, 2005, 16(3):319-327.
[2] Poole KE, van Bezooijen RL, Loveridge N, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation[J]. FASEB J, 2005, 19(13):1842-1844.
[3] J?ger A, G?tz W, Lossd?rfer S, et al. Localization of SOST/sclerostin in cementocytes in vivo and in mineralizing periodontal ligament cells in vitro[J]. J Periodont Res, 2010, 45(2):246-254.
[4] Sawada T, Ishikawa T, Shintani S, et al. Ultrastructural immunolocalization of dentin matrix protein 1 on sharpey’s fibers in monkey tooth cementum[J]. Biotech Histochem, 2012, 87(5):360-365.
[5] Naka T, Yokose S. Spatiotemporal expression of sclerostin in odontoblasts during embryonic mouse tooth morphogenesis[J]. J Endod, 2011, 37(3):340-345.
[6] Lehnen SD, G?tz W, Baxmann M, et al. Immunohistochemical evidence for sclerostin during cementogenesis in mice[J]. Ann Anat, 2012, 194(5):415-421.
[7] Bao Xingfu, Liu Yuyan, Han Guanghong, et al. The effect on proliferation and differentiation of cementoblast by using sclerostin as inhibitor[J]. IJMS, 2013, 14(10):21140-21152.
[8] Kuchler U, Schwarze UY, Dobsak T, et al. Dental and periodontal phenotype in sclerostin knockout mice[J]. Int J Oral Sci, 2014, 6(2):70-76.
[9] Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype[J]. J Dent Res, 2005, 84(5):390-406.
[10] Foster BL, Popowics TE, Fong HK, et al. Advances in defining regulators of cementum development and periodontal regeneration[J]. Curr Top Dev Biol, 2007, 78:47-126.
[11] van Bezooijen RL, Bronckers AL, Gortzak RA, et al. Sclerostin in mineralized matrices and van Buchem disease[J]. J Dent Res, 2009, 88(6):569-574.
[12] Bonewald LF. The amazing osteocyte[J]. J Bone Miner Res, 2011, 26(2):229-238.
[13] Fujii Y, Hoshino T, Kumon H. Molecular simulation analysis of the structure complex of C2 domains of DKK family members and β-propeller domains of LRP5/6: explaining why DKK3 does not bind to LRP5/6[J]. Acta Med Okayama, 2014, 68(2):63-78.
[14] Miao CG, Yang YY, He X, et al. Wnt signaling in liver fibrosis: progress, challenges and potential directions[J]. Biochimie, 2013, 95(12):2326-2335.
[15] McGee-Lawrence ME, Ryan ZC, Carpio LR, et al. Sclerostin deficient mice rapidly heal bone defects by activating β-catenin and increasing intramembranous ossification[J]. Biochem Biophys Res Commun, 2013, 441(4):886-890.
[16] Ellies DL, Economou A, Viviano B, et al. Wise regulates bone deposition through genetic interactions with Lrp5[J]. PloS one. 2014, 9(5):e96257.
[17] Zhang R, Yang G, Wu X, et al. Disruption of Wnt/β-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth[J]. Int J Biol Sci, 2013, 9(3):228-236.
[18] Kim TH, Bae CH, Jang EH, et al. Col1a1-cre mediated activation of β-catenin leads to aberrant dentoalveolar complex formation[J]. Anat Cell Biol, 2012, 45(3):193-202.
[19] Kim TH, Lee JY, Baek JA, et al. Constitutive stabilization of ?-catenin in the dental mesenchyme leads to excessive dentin and cementum formation [J]. Biochem Biophys Res Commun, 2011, 412(4):549-555.
[20] 郑桂婷, 徐燕. WNT/β-连环蛋白信号转导通路在牙周组织再生中的作用[J]. 国际口腔医学杂志, 2013, 40(6):773-777.
Zheng GT, Xu Y. Effects of the wnt/β-catenin signal transduction pathway on periodontal tissue regeneration[J]. Int J Stomatol, 2013, 40(6):773-777.
[21] Du Y, Ling J, Wei X, et al. Wnt/β-catenin signaling participates in cementoblast/osteoblast differentiation of dental follicle cells[J]. Connect Tissue Res, 2012, 53(5):390-397.
[22] Silvério KG, Davidson KC, James RG, et al. Wnt/β-catenin pathway regulates bone morphogenetic protein (BMP2)-mediated differentiation of dental follicle cells[J]. J Periodont Res, 2012, 47(3):309-319.
[23] Nemoto E, Koshikawa Y, Kanaya S, et al. Wnt signaling inhibits cementoblast differentiation and promotes proliferation[J]. Bone, 2009, 44(5):805-812.
[24] Han P, Ivanovski S, Crawford R, et al. Activation of the canonical Wnt signaling pathway induces cementum regeneration[J]. J Bone Miner Res, 2015, 30(7):1160-1174.
[25] Sevetson B, Taylor S, Pan Y. Cbfa1/RUNX2 directs specific expression of the sclerosteosis gene (SOST)[J]. J Biol Chem, 2004, 279(14):13849-13858.
[26] Yang F, Tang W, So S, et al. Sclerostin is a direct target of osteoblast-specific transcription factor osterix[J]. Biochem Biophys Res Commun, 2010, 400(4):684-688.
[27] Fatherazi S, Matsa-Dunn D, Foster BL, et al. Phosphate regulates osteopontin gene transcription [J]. J Dent Res, 2009, 88(1):39-44.
[28] Rutherford RB, Foster BL, Bammler T, et al. Extracellular phosphate alters cementoblast gene expression[J]. J Dent Res, 2006, 85(6):505-509.
[29] Kogawa M, Wijenayaka AR, Ormsby RT, et al. Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2[J]. J Bone Miner Res, 2013, 28(12):2436-2448.
[30] Ryan ZC, Craig TA, Salisbury JL, et al. Enhanced prostacyclin formation and Wnt signaling in sclerostin deficient osteocytes and bone[J]. Biochem Biophys Res Commun, 2014, 448(1):83-88.
[31] Li F, Song N, Tombran-Tink J, et al. Pigment epithelium derived factor suppresses expression of Sost/Sclerostin by osteocytes: implication for its role in bone matrix mineralization[J]. J Cell Physiol, 2015, 230(6):1243-1249.
(本文采编 王晴)
[1] Xie Yongting,Huang Ruijie,Zou Jing. Research advances on oral manifestation of hypophosphatasia [J]. Int J Stomatol, 2022, 49(2): 239-243.
[2] Hao Fu,Sun Rui. Research progress on second primary carcinoma of head and neck squamous cell carcinoma [J]. Int J Stomatol, 2019, 46(5): 585-592.
[3] Caiwei Xu,Yi Xue,Zhongyin Wu. Research progress on the relationship between periodontitis and sclerostin [J]. Inter J Stomatol, 2018, 45(6): 703-709.
[4] Chen Jie, Guo Weihua, Tian Weidong. Molecular mechanisms of dental follicle cell and epithelial root sheath cell differentiation into acellular cementum [J]. Inter J Stomatol, 2014, 41(3): 314-319.
[5] Ou Wei1, Sun Weibin2.. Biological function and application prospects of cementum protein 1 [J]. Inter J Stomatol, 2014, 41(2): 209-212.
[6] Zheng Guiting, Xu Yan. Effects of the WNT/β-catenin signal transduction pathway on periodontal tissue regeneration [J]. Inter J Stomatol, 2013, 40(6): 773-777.
[7] Liu Yong, Yang Rongtao, Li Zubing.. Research progress on the molecular mechanisms for the degeneration of Meckel’s cartilage [J]. Inter J Stomatol, 2012, 39(3): 339-341.
[8] Lin Tingting, Lu Eryi.. Molecular mechanism of sclerostin on bone remoldling [J]. Inter J Stomatol, 2012, 39(2): 269-272.
[9] XI Qiao-ling, CHEN Zhi, ZHANG Lu. Research advances on periodontal epithelial rest [J]. Inter J Stomatol, 2009, 36(2): 205-205~207,210.
[10]

LU Shi-jun, WEI Xin

. Resear ch advancement about the molecular mechanism of acid toler ance of Strepto [J]. Inter J Stomatol, 2008, 35(5): 534-534~536.
[11]

LU Jia- jing, GE Zhen- lin

. Resear ch process of the molecular mechanism of dental root r esorption induced b [J]. Inter J Stomatol, 2008, 35(5): 599-599~601.
[12] JIAO Guo- hua, ZHANG Zhi- guang.. Molecular Mechanism of Pain in Temporomandibular Disorders [J]. Inter J Stomatol, 2007, 34(02): 116-118.
[13] XU Xiang- liang1, ZHAO Shi - jie1, GAO Yan2. Advances on Cells Associated with Cementum [J]. Inter J Stomatol, 2007, 34(01): 16-16~18.
[14] DONG Hai, NIE Xin, LIU Lei. Advanced Resear ch on Regener ating Mechanism of Injur ed Facial Nerve [J]. Inter J Stomatol, 2007, 34(01): 41-41~43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .