Inter J Stomatol ›› 2016, Vol. 43 ›› Issue (3): 318-324.doi: 10.7518/gjkq.2016.03.015

Previous Articles     Next Articles

Epigenetics in tooth development and its implication in tooth regeneration

Zhou Chen1, Ling Junqi2   

  1. 1. Dept. of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; 2. Dept. of Conservative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China) This study was supported by the National Natural Science Foundation of China(81170932)and Special Talents Fund in Guangdong Province(52000-3210002).
  • Received:2015-06-30 Revised:2016-02-23 Online:2016-05-01 Published:2016-05-01

Abstract: Epigenetics, mainly including DNA methylation and histone post-translational modification, is the heritable changes that are not caused by changes in the DNA sequence; this change also alters how genes are expressed. DNA methylation typically causes gene transcriptional silencing, whereas demethylation leads to transcription activation. A large number of covalent modifications on histone, such as different types, residues, and amount, will affect the inhibition or activation of gene expression. Epigenetic modifications play pivotal roles in organogenesis by controlling gene expression during cell fate determination and reprogramming. In the process of tooth development, complex orchestration between genetic and epigenetic programs regulates the spatiotemporal expression of cell proliferation-, differentiation-, and migration-related genes, and finally tooth formation. Exploring the molecular biology of epigenetic, together with the epigenetic findings in tooth development, is not only fundamental but also inspiring for tooth regeneration.

Key words: tooth development, gene expression and regulation, epigenetics, tooth regeneration, tooth development, gene expression and regulation, epigenetics, tooth regeneration

CLC Number: 

  • Q 786

TrendMD: 
[1] Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth[J]. Nat Rev Genet, 2004, 5(7):499-508.
[2] Li Z, Yu M, Tian W. An inductive signalling network regulates mammalian tooth morphogenesis with implications for tooth regeneration[J]. Cell Prolif, 2013, 46(5):501-508.
[3] Jussila M, Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages[J]. Cold Spring Harb Perspect Biol, 2012, 4(4):a008425.
[4] Zhang YD, Chen Z, Song YQ, et al. Making a tooth: growth factors, transcription factors, and stem cells [J]. Cell Res, 2005, 15(5):301-316.
[5] Mitsiadis TA, Luder HU. Genetic basis for tooth malformations: from mice to men and back again[J]. Clin Genet, 2011, 80(4):319-329.
[6] Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals[J]. Nat Genet, 2003, 33 (Suppl):245-254.
[7] Orphanides G, Reinberg D. A unified theory of gene expression[J]. Cell, 2002, 108(4):439-451.
[8] Rakyan V, Whitelaw E. Transgenerational epigenetic inheritance[J]. Curr Biol, 2003, 13(1):R6.
[9] Hui T, Wang C, Chen D, et al. Epigenetic regulation in dental pulp inflammation[J]. Oral Dis, 2016, doi:10.1111/odi.12464.
[10] 李佳佳, 陈德桂. DNA甲基化修饰研究概述[J]. 中国细胞生物学学报, 2010, 32(2):189-192.
Li JJ, Chen DG. A summarization of DNA methyaltion modification research [J]. Chin J Cell Biol, 2010, 32(2):189-192.
[11] Santi DV, Garrett CE, Barr PJ. On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs[J]. Cell, 1983, 33(1):9-10.
[12] Schubeler D. Function and information content of DNA methylation[J]. Nature, 2015, 517(7534):321-326.
[13] Bird AP. CpG-rich islands and the function of DNA methylation[J]. Nature, 1986, 321(6067):209-213.
[14] Smith ZD, Meissner A. DNA methylation: roles in mammalian development[J]. Nat Rev Genet, 2013, 14(3):204-220.
[15] Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond[J]. Nat Rev Genet, 2012, 13(7):484-492.
[16] Barreto G, Sch?fer A, Marhold J, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation[J]. Nature, 2007, 445(7128):671-675.
[17] Rai K, Huggins IJ, James SR, et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45[J]. Cell, 2008, 135(7):1201-1212.
[18] Jin SG, Guo C, Pfeifer GP. GADD45A does not promote DNA demethylation[J]. PLoS Genet, 2008, 4(3):e1000013.
[19] Szwagierczak A, Bultmann S, Schmidt CS, et al. Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA[J]. Nucleic Acids Res, 2010, 38(19):e181.
[20] Williams K, Christensen J, Pedersen MT, et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity[J]. Nature, 2011, 473(7347):343-348.
[21] Pastor WA, Pape UJ, Huang Y, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells[J]. Nature, 2011, 473(7347):394-397.
[22] Ficz G, Branco MR, Seisenberger S, et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation[J]. Nature, 2011, 473(7347):398-402.
[23] Sun Z, Terragni J, Jolyon T, et al. High-resolution enzymatic mapping of genomic 5-hydroxymehytlcytosine in mouse embryonic stem cells[J]. Cell Rep, 2013, 3(2):567-576.
[24] Guo JU, Su Y, Zhong C, et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain[J]. Cell, 2011, 145(3):423-434.
[25] Kouzarides T. Chromatin modifications and their function[J]. Cell, 2007, 128(4):693-705.
[26] Chen T, Dent SY. Chromatin modifiers and remodellers: regulators of cellular differentiation[J]. Nat Rev Genet, 2014, 15(2):93-106.
[27] Peserico A, Simone C. Physical and functional HAT/ HDAC interplay regulates protein acetylation balance[J]. J Biom Biotechnol, 2011:1-10.
[28] Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance[J]. Nat Rev Genet, 2012, 13(5):343-357.
[29] Rea S, Eisenhaber F, O’Carroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases[J]. Nature, 2000, 406(6796):593-599.
[30] Jenuwein T, Allis CD. Translating the histone code [J]. Science, 2001, 293(5532):1074-1080.
[31] Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications[J]. Biochim Biophys Acta, 2014, 1839(8):627-643.
[32] Yang Y, Bedford MT. Protein arginine methyltransferases and cancer[J]. Nat Rev Cancer, 2013, 13(1):37-50.
[33] 杜婷婷, 黄秋花. 组蛋白赖氨酸甲基化在表观遗传调控中的作用[J]. 遗传, 2007, 29(4):387-392.
Du TT, Huang QH. The roles of histone lysine methylation in epigenetic regulation[J]. Hereditas, 2007, 29(4):387-392.
[34] Townsend G, Rogers J, Richards L, et al. Agenesis of permanent maxillary lateral incisors in South Australian twins[J]. Aust Dent J, 1995, 40(3):186-192.
[35] Townsend G, Richards L, Hughes T. Molar intercuspal dimensions: genetic input to phenotypic variation[J]. J Dent Res, 2003, 82(5):350-355.
[36] Iglesias-Bartolome R, Callejas-Valera JL, Gutkind JS. Control of the epithelial stem cell epigenome: the shaping of epithelial stem cell identity[J]. Curr Opin Cell Biol, 2013, 25(2):162-169.
[37] Fan Z, Yamaza T, Lee JS, et al. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms[J]. Nat Cell Biol, 2009, 11(8):1002-1009.
[38] Kamiunten T, Ideno H, Shimada A, et al. Coordinated expression of H3K9 histone methyltransferases during tooth development in mice[J]. Histochem Cell Biol, 2015, 143(3):259-266.
[39] Xu J, Yu B, Hong C, et al. KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells[J]. Int J Oral Sci, 2013, 5(4):200-205.
[40] Casagrande L, Demarco FF, Zhang Z, et al. Dentinderived BMP-2 and odontoblast differentiation[J]. J Dent Res, 2010, 89(6):603-608.
[41] Dong R, Yao R, Du J, et al. Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla[J]. Exp Cell Res, 2013, 319(18):2874-2882.
[42] Du J, Ma Y, Ma P, et al. Demethylation of epiregulin gene by histone demethylase FBXL11 and BCL6 corepressor inhibits osteo/dentinogenic differentiation[J]. Stem Cells, 2013, 31(1):126-136.
[43] Wang T, Liu H, Ning Y, et al. The histone acetyltransferase p300 regulates the expression of pluripotency factors and odontogenic differentiation of human dental pulp cells[J]. PLoS One, 2014, 9(7): e102117.
[44] Jin H, Park JY, Choi H, et al. HDAC inhibitor trichostatin A promotes proliferation and odontoblast differentiation of human dental pulp stem cells[J]. Tissue Eng Part A, 2013, 19(5/6):613-624.
[45] Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium[J]. Arch Oral Biol, 1987, 32(2):123-127.
[46] Nakao K, Morita R, Saji Y, et al. The development of a bioengineered organ germ method[J]. Nat Methods, 2007, 4(3):227-230.
[47] Hu B, Nadiri A, Kuchler-Bopp S, et al. Tissue engineering of tooth crown, root, and periodontium[J]. Tissue Eng, 2006, 12(8):2069-2075.
[48] Mao JJ, Prockop DJ. Stem cells in the face: tooth regeneration and beyond[J]. Cell stem cell, 2012, 11(3):291-301.
[49] Papp B, Plath K. Epigenetics of reprogramming to induced pluripotency[J]. Cell, 2013, 152(6):1324-1343.
[50] Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells[J]. Nature, 2010, 467(7313):285-290.
[51] Bar-Nur O, Russ HA, Efrat S, et al. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells[J]. Cell Stem Cell, 2011, 9(1):17-23.
[52] Bhutani N, Brady JJ, Damian M, et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation[J]. Nature, 2010, 463(7284):1042-1047.
[53] Balana B, Nicoletti C, Zahanich I, et al. 5-Azacytidine induces changes in electrophysiological properties of human mesenchymal stem cells[J]. Cell Res, 2006, 16(12):949-960.
(本文采编 王晴)
[1] Wang Luodan,Fan Hong. Morphological characteristics of sella turcica and its relationship with malocclusion [J]. Int J Stomatol, 2023, 50(6): 653-660.
[2] Zhao Manzhu,Song Jinlin. Research progress on expression distribution and regulation mechanism of clock genes in tooth development [J]. Int J Stomatol, 2022, 49(4): 380-385.
[3] Ma Xiaofang,Huang Yongqing,Shi Bing,Ma Jian. Application of twin model in etiology of cleft lip with or without cleft palate [J]. Int J Stomatol, 2021, 48(5): 512-519.
[4] Liu Shuang, Li Shu.. The effect of epigenetics and its regulation on periodontal disease [J]. Inter J Stomatol, 2017, 44(5): 523-527.
[5] Ban Huajie1, Wang Daiyou2.. Extracellular signal-regulated kinase signal transduction pathway in dentification and tooth regeneration [J]. Inter J Stomatol, 2015, 42(6): 694-698.
[6] Lü Linlin, Li Shu. Involvement of Yes-associated protein gene in tooth development [J]. Inter J Stomatol, 2013, 40(6): 760-763.
[7] WU Yu, ZHOU Xue-dong.. Cell-cell interactions in tooth development [J]. Inter J Stomatol, 2011, 38(3): 319-322.
[8] MA Liang, WANG Sheng-chao, ZHANG Ya-qing.. Role of epigenetics in tooth morphogenesis [J]. Inter J Stomatol, 2010, 37(4): 447-450.
[9] GUO Jun, YANG Jian.. Research progress on stem cells from the apical papilla and its application in tissue engineering [J]. Inter J Stomatol, 2010, 37(4): 464-466.
[10] CHENG Min, CHENG Lin, FENG Zhi-yuan, LI Guang-yi. Expression and significance of bone morphogenetic protein-2 in each stage of toot [J]. Inter J Stomatol, 2009, 36(6): 639-642.
[11] WANG Jin-ming, LING Jun-qi. Reporter gene and its application in tooth development and tooth regeneration[J]. Inter J Stomatol, 2009, 36(1): 105-105~107.
[12] MA Liang, WANG Sheng-chao, ZHANG Ya-qing. Progress on effects of Notch signal pathway in tooth germ development and dental [J]. Inter J Stomatol, 2009, 36(1): 64-64~68.
[13] XU Xiu-min, MEI Ling-xuan. Advances in the research on axin-2 and tooth development [J]. Inter J Stomatol, 2008, 35(6): 675-675~677.
[14] LIU Zong- xia, LI Shu. Resear ch progr ess of lymphoid enhancing factor - 1 in stomatology [J]. Inter J Stomatol, 2008, 35(3): 280-280~282.
[15] WEN Jun, LU Qun, ZHU Qing-lin. runx-2 and tooth development [J]. Inter J Stomatol, 2008, 35(2): 164-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .