国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (3): 296-304.doi: 10.7518/gjkq.2022061

• 论著 • 上一篇    下一篇

不同补偿间隙3D打印正颌手术𬌗板对咬合精度的影响

马建斌(),薛超然,王沛棋,李彬,白丁()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院正畸科 成都 610041
  • 收稿日期:2021-11-16 修回日期:2022-03-05 出版日期:2022-05-01 发布日期:2022-05-09
  • 通讯作者: 白丁
  • 作者简介:马建斌,硕士,Email:Jianbin_Ma@outlook.com
  • 基金资助:
    四川省科技创新苗子工程(20-YCG045)

Effect of 3D printing orthognathic surgical splints with different dental model offsets on occlusal precision

Ma Jianbin(),Xue Chaoran,Wang Peiqi,Li Bin,Bai Ding.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-11-16 Revised:2022-03-05 Online:2022-05-01 Published:2022-05-09
  • Contact: Ding. Bai
  • Supported by:
    Miaozi Project in Science and Technology Innovation Program of Sichuan Province(20-YCG045)

摘要: 目的

研究不同补偿间隙3D打印正颌手术𬌗板(OSS)对咬合精度的影响,并探讨制作OSS的最适补偿间隙。

方法

选取10副符合正常𬌗咬合标准的树脂模型,使用光学扫描仪获取其数字化模型,利用3D光敏树脂打印机制作树脂研究模型,扫描获取其原始咬合数字化模型。分别对每副模型设计不同补偿间隙(0.00、0.05、0.10、0.15、0.20、0.25 mm)的数字化OSS,并使用3D打印法制作实体OSS。将各副树脂研究模型的上、下牙列重新咬合于不同补偿间隙的OSS上,评估上、下牙列的实际咬合在水平向、矢状向、垂直向、俯仰、滚转、偏航6个维度上较原始咬合的偏差。

结果

1)使用无补偿间隙(0.00 mm)的OSS,获得的实际咬合在6个维度上均有偏差,垂直向(1.044 mm±0.181 mm)及俯仰(1.738°±0.772°)维度上的偏差最大。2)在矢状向、垂直向、俯仰、滚转维度上,随着补偿间隙的增大,实际咬合的偏差均值逐渐减小。其中在垂直向和俯仰维度上,0.15 mm组所获实际咬合的偏差分别小于0.00、0.05、0.10 mm组(P<0.01),而与0.20、0.25 mm组的差异无统计学意义(P>0.05)。在矢状向和滚转维度,各组间的差异均无统计学意义(P>0.05)。3)在水平向及偏航维度,实际咬合的偏差在0.00~0.20 mm组内随着补偿间隙的增大,偏差均值逐渐减小,而0.25 mm组的实际咬合偏差较0.20 mm组增大,但差异均无统计学意义(P>0.05)。

结论

设计有补偿间隙的3D打印OSS能够减小实际咬合的偏差,0.15 mm是制作OSS的最适补偿间隙。

关键词: 计算机辅助技术, 3D打印, 正颌手术𬌗板, 补偿间隙

Abstract: Objective

This study aimed to assess the precision of 3D-printed orthognathic surgical splints (OSS) with different dental model offsets and explore the optimal offsets of OSS.

Methods

Ten resin models that met the standard of normal occlusion were selected, and the digital models were obtained by using an optical scanner. The research models were made by using a 3D photosensitive resin printer, and then the original digital models were obtained. Digital OSS with different offsets (0.00, 0.05, 0.10, 0.15, 0.20, and 0.25 mm groups) was designed for each model, and physical OSS was fabricated by 3D printing. The upper and lower dentition of each resin model was reoccluded in OSS with different offsets, and the deviation of the actual occlusion from the original occlusion in six dimensions of horizontal, sagittal, vertical, pitch, roll, and yaw was evaluated.

Results

1) The actual occlusion obtained by OSS without offsets (0.00 mm group) had deviation in six dimensions, and the deviation in vertical (1.044±0.181 mm) and pitch (1.738°±0.772°) dimensions was the largest. 2) In sagittal, vertical, pitch, and roll dimensions, the mean value of actual occlusal deviation gradually decreases with the increase of offsets. In the vertical and pitch dimensions, the actual occlusal deviation of the 0.15 mm group was significantly less than that of the 0.00, 0.05, and 0.10 mm groups (P<0.01), but no significant difference was found between the 0.20 mm and 0.25 mm groups (P>0.05). In addition, no significant difference in sagittal and roll dimensions was found among the groups (P>0.05). 3) In the horizontal and yaw dimensions, within the range of 0.00-0.20 mm, the mean value of actual occlusal deviation gradually decreased with the increase of offsets (P>0.05). However, the actual occlusal deviation of the 0.25 mm group was larger than that of the 0.20 mm group (P>0.05).

Conclusion

3D printed OSS with offsets can reduce the deviation of the actual occlusion. Among the parameters, 0.15 mm is the suitable option for generating OSS.

Key words: computer-aided technology, 3D printing, orthognathic surgical splints, offsets

中图分类号: 

  • R 783

图1

具有不同法向偏移量的研究模型A:负法向偏移模型;B:原始模型;C:正法向偏移模型。"

图2

具有补偿间隙的OSS的制作A:原始模型;B:设计有正法向偏移的模型;C:基于原始模型制作的数字化OSS;D:基于有正法向偏移的模型制作的数字化OSS。"

图3

实体OSS及咬合模型A:基于原始模型制作的实体OSS;B:基于有正法向偏移的模型制作的实体OSS;C:上下牙列咬合于实体OSS。"

图4

参考模型全局坐标系A:正面观;B:侧面观。X:水平向;Y:矢状向;Z:垂直向;P:俯仰;Q:滚转;R:偏航。"

表 1

测量维度定义"

维度正向负向
X配准模型相对于参考模型位于坐标原点右侧配准模型相对于参考模型位于坐标原点左侧
Y配准模型相对于参考模型位于坐标原点前方配准模型相对于参考模型位于坐标原点后方
Z配准模型相对于参考模型位于坐标原点上方配准模型相对于参考模型位于坐标原点下方
P配准模型相对于参考模型位于坐标原点前上或后下配准模型相对于参考模型位于坐标原点前下或后上
Q配准模型相对于参考模型位于坐标原点左上或右下配准模型相对于参考模型位于坐标原点左下或右上
R配准模型相对于参考模型位于坐标原点左后或右前配准模型相对于参考模型位于坐标原点左前或右后

表 2

同一研究者测量及试验操作可重复性结果"

ICC水平向(X矢状向(Y垂直向(Z俯仰(P滚转(Q偏航(R
测量方法0.9840.9970.9990.9980.9850.994
试验操作0.9670.9350.9680.9650.9320.920

表 3

不同补偿间隙OSS在 X、Y、Z 三维向上平移偏差的总体情况"

补偿间隙最大值最小值均值标准差P
XYZXYZXYZXYZXYZ
0.000.1740.1861.4210.0210.0110.8130.0750.1211.0440.0510.0500.1810.1060.8270.542
0.050.1980.1721.0950.0120.0630.4130.0720.1090.7430.0540.0410.2170.1250.2960.576
0.100.0860.2200.7120.0010.0110.1230.0350.1040.3880.0330.0710.2180.0500.7130.272
0.150.1150.2180.5440.0110.0120.0030.0300.0770.1760.0410.0630.1750.0690.0560.124
0.200.0560.2480.2660.0020.0010.0120.0280.0740.1130.0170.0750.1010.5910.1030.056
0.250.1640.2210.1550.0060.0010.0050.0580.0720.0660.0470.0760.0490.1940.0630.437

表 4

不同补偿间隙OSS在 P、Q、R 三维向上旋转偏差的总体情况"

补偿间隙/mm最大值最小值均值标准差P
PQRPQRPQRPQRPQR
0.002.9380.6460.1180.6500.0170.0161.7380.2840.1570.7720.1890.0340.3960.0770.297
0.052.7320.8470.3870.0180.0510.0121.6690.2440.1320.7810.2370.1150.4940.0530.106
0.101.6291.2330.5090.0280.0080.0010.8340.2210.0940.6210.4090.1590.1590.0630.052
0.151.4600.6590.2140.0780.0090.0190.6240.1760.0870.5240.2110.0640.0880.1390.279
0.200.9520.7090.1060.1100.0120.0030.5670.1310.0470.3310.2140.0360.1860.0720.407
0.250.8690.6270.9100.0440.0030.0420.2870.0960.2020.2960.1880.2630.0680.1210.685

表 5

不同补偿间隙OSS在各个维度的偏差值 (mm,xˉ±s)"

维度补偿间隙/mm
0.000.050.100.150.200.25
X/mm0.071±0.0510.072±0.0540.035±0.0330.056±0.0410.028±0.0170.058±0.047
Y/mm0.083±0.0500.109±0.0410.104±0.0710.077±0.0630.077±0.0750.072±0.076
Z/mm1.044±0.181☆◇△○0.743±0.217☆◇△○0.388±0.218*#◇△○0.176±0.175*#☆0.113±0.100*#☆0.066±0.048*#☆
P/°1.738±0.772☆◇△○1.669±0.781☆◇△○0.834±0.621*#0.624±0.524*#☆0.567±0.331*#☆0.287±0.296*#☆
Q/°0.204±0.1890.189±0.2370.281±0.4090.209±0.2110.151±0.2140.096±0.188
R/°0.057±0.0340.132±0.1150.094±0.1590.087±0.0640.047±0.0360.202±0.263

图 5

以原始咬合为参考,OSS垂直维度咬合偏差对下颌骨块位置的影响A:原始咬合及颌骨关系;B:垂直向1.421 mm偏差对咬合及下颌骨块的影响;C:三维重叠色谱分析。当OSS离坐标圆心存在1.421 mm垂直向误差时,最大可引起下颌远心骨段外周区域(如颏部、下颌升支区域等)下移1.593 mm。"

图 6

以原始咬合为参考,OSS俯仰维度咬合偏差对下颌骨块位置的影响A:原始咬合及颌骨关系;B:俯仰维度2.938°偏差对咬合及下颌骨块的影响;C:三维重叠色谱分析。当OSS绕坐标圆心存在2.938°前下俯仰误差时,最大可引起下颌颏部区域后移2.632 mm,下颌升支区域上移3.238 mm。"

1 Lin HH, Lonic D, Lo LJ. 3D printing in orthognathic surgery-a literature review[J]. J Formos Med Assoc, 2018, 117(7): 547-558.
2 Sun Y, Luebbers HT, Agbaje JO, et al. Accuracy of upper jaw positioning with intermediate splint fabrication after virtual planning in bimaxillary orthognathic surgery[J]. J Craniofacial Surg, 2013, 24(6): 1871-1876.
3 李运峰, 祝颂松. 数字化技术在牙颌面畸形诊疗中的应用[J]. 口腔疾病防治, 2019, 27(2): 74-82.
Li YF, Zhu SS. Application of digital technology in diagnosis and treatment of dentofacial deformities[J]. J Prev Treat Stomatol Dis, 2019, 27(2): 74-82.
4 Chen X, Xu L, Wang W, et al. Computer-aided design and manufacturing of surgical templates and their clinical applications: a review[J]. Expert Rev Med Devices, 2016, 13(9): 853-864.
5 Lin YP, Zhang SL, Chen XJ, et al. A novel method in the design and fabrication of dental splints based on 3D simulation and rapid prototyping technology[J]. Int J Adv Manuf Technol, 2006, 28(9/10): 919-922.
6 Metzger MC, Hohlweg-Majert B, Schwarz U, et al. Manufacturing splints for orthognathic surgery using a three-dimensional printer[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008, 105(2): e1-e7.
7 Shaheen E, Sun Y, Jacobs R, et al. Three-dimensio-nal printed final occlusal splint for orthognathic surgery: design and validation[J]. Int J Oral Maxillofac Surg, 2017, 46(1): 67-71.
8 Kim BC, Lee CE, Park W, et al. Clinical experien-ces of digital model surgery and the rapid-prototyped wafer for maxillary orthognathic surgery[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011, 111(3): 278-285.e1.
9 Olszewski R, Reychler H. Les limites de la chirurgie des modèles en chirurgie orthognathique: implications théoriques et pratiques[J]. Revue De Stomatol et De Chir Maxillo Faciale, 2004, 105(3): 165-169.
10 Choi JY, Song KG, Baek SH. Virtual model surgery and wafer fabrication for orthognathic surgery[J]. Int J Oral Maxillofac Surg, 2009, 38(12): 1306-1310.
11 Cousley RR, Turner MJ. Digital model planning and computerized fabrication of orthognathic surgery wafers[J]. J Orthod, 2014, 41(1): 38-45.
12 Ghai S, Sharma Y, Jain N, et al. Use of 3-D printing technologies in craniomaxillofacial surgery: a review[J]. Oral Maxillofac Surg, 2018, 22(3): 249-259.
13 Jacobs CA, Lin AY. A new classification of three-dimensional printing technologies: systematic review of three-dimensional printing for patient-specific craniomaxillofacial surgery[J]. Plast Reconstr Surg, 2017, 139(5): 1211-1220.
14 Shehab MF, Barakat AA, AbdElghany K, et al. A novel design of a computer-generated splint for vertical repositioning of the maxilla after Le Fort Ⅰ osteotomy[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2013, 115(2): e16-e25.
15 Kim SY, Shin YS, Jung HD, et al. Precision and trueness of dental models manufactured with diffe-rent 3-dimensional printing techniques[J]. Am J Orthod Dentofac Orthop, 2018, 153(1): 144-153.
16 Lauren M, McIntyre F. A new computer-assisted method for design and fabrication of occlusal splints[J]. Am J Orthod Dentofac Orthop, 2008, 133(4): S130-S135.
17 Song KG, Baek SH. Comparison of the accuracy of the three-dimensional virtual method and the conventional manual method for model surgery and intermediate wafer fabrication[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009, 107(1): 13-21.
18 Shqaidef A, Ayoub AF, Khambay BS. How accurate are rapid prototyped (RP) final orthognathic surgical wafers? A pilot study[J]. Br J Oral Maxillofac Surg, 2014, 52(7): 609-614.
19 Ye NS, Wu TT, Dong T, et al. Precision of 3D-prin-ted splints with different dental model offsets[J]. Am J Orthod Dentofac Orthop, 2019, 155(5): 733-738.
20 Kim SJ, Lee KJ, Yu HS, et al. Three-dimensional effect of pitch, roll, and yaw rotations on maxillomandibular complex movement[J]. J Craniomaxillofac Surg, 2015, 43(2): 264-273.
21 Xue C, Xu H, Tian Y, et al. Precise control of maxillary multidirectional movement in Le Fort Ⅰ osteo-tomy using a surgical guiding device[J]. Br J Oral Maxillofac Surg, 2018, 56(9): 797-804.
22 Hazeveld A, Huddleston Slater JJ, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques[J]. Am J Orthod Dentofac Orthop, 2014, 145(1): 108-115.
23 Sherman SL, Kadioglu O, Currier GF, et al. Accuracy of digital light processing printing of 3-dimensional dental models[J]. Am J Orthod Dentofac Orthop, 2020, 157(3): 422-428.
24 Gateno J, Xia J, Teichgraeber JF, et al. The precision of computer-generated surgical splints[J]. J Oral Maxillofac Surg, 2003, 61(7): 814-817.
25 Adolphs N, Liu WC, Keeve E, et al. RapidSplint: virtual splint generation for orthognathic surgery- results of a pilot series[J]. Comput Aided Surg, 2014, 19(1/2/3): 20-28.
26 Elbokle N, Sultan O. The precision of 3D printed CAD/CAM occlusal splints in orthognathic surgery[J]. Egypt Dent J, 2018, 64(3): 2073-2079.
27 Choi JY, Choi JH, Kim NK, et al. Analysis of errors in medical rapid prototyping models[J]. Int J Oral Maxillofac Surg, 2002, 31(1): 23-32.
28 Winder J, Bibb R. Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery[J]. J Oral Maxillofac Surg, 2005, 63(7): 1006-1015.
29 Dietrich CA, Ender A, Baumgartner S, et al. A validation study of reconstructed rapid prototyping mo-dels produced by two technologies[J]. Angle Orthod, 2017, 87(5): 782-787.
30 Vasques MT, Laganá DC. Accuracy and internal fit of 3D printed occlusal splint, according to the prin-ting position[J]. Clin Lab Res Dent, 2018. doi:10.11606/issn.2357-8041.clrd.2018.148012.
31 Marcel R, Reinhard H, Andreas K. Accuracy of CAD/CAM-fabricated bite splints: milling vs 3D printing[J]. Clin Oral Investig, 2020, 24(12): 4607-4615.
32 Unkovskiy A, Bui PHB, Schille C, et al. Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of ste-reolithographically printed resin[J]. Dent Mater, 2018, 34(12): e324-e333.
33 Favero CS, English JD, Cozad BE, et al. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models[J]. Am J Orthod Dentofac Orthop, 2017, 152(4): 557-565.
34 Zhang ZC, Li PL, Chu FT, et al. Influence of the three-dimensional printing technique and printing layer thickness on model accuracy[J]. J Orofac Orthop, 2019, 80(4): 194-204.
[1] 王立冬,马文,付帅,张长彬,崔庆赢,梁燕,黎明. 不同方法制作正颌手术数字化牙合板的研究及精确性分析[J]. 国际口腔医学杂志, 2021, 48(2): 156-164.
[2] 张心驰,吴炜. 颌面骨再生领域3D打印技术及应用材料的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 677-685.
[3] 刘春煦,鲁雨晴,贾璐铭,董博,张倩倩,于海洋. 选择性激光熔融与铸造钛合金卡环的模拟摘戴固位力研究[J]. 国际口腔医学杂志, 2020, 47(2): 152-158.
[4] 王珂, 项涛, 汤亚玲, 梁新华. 3D打印技术在口腔颌面外科实验教学中的应用[J]. 国际口腔医学杂志, 2018, 45(1): 119-124.
[5] 王静,袁荣涛,董蒨. 计算机辅助手术系统与3D打印技术在口腔颌面部缺损修复重建中的应用[J]. 国际口腔医学杂志, 2016, 43(6): 725-728.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .