国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (5): 614-620.doi: 10.7518/gjkq.2021098

• 综述 • 上一篇    

机器人手术在头颈、耳鼻喉区域的发展现状

章杲威(),李春洁()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院头颈肿瘤外科 成都 610041
  • 收稿日期:2021-02-26 修回日期:2021-06-15 出版日期:2021-09-01 发布日期:2021-09-10
  • 通讯作者: 李春洁
  • 作者简介:章杲威,硕士,Email: zhanggw0422@163.com
  • 基金资助:
    国家自然科学基金-深圳机器人基础研究中心项目(U1813-213);四川省科学技术厅应用基础研究项目(2021YJ0129)

Development of robotic surgery in otorhinolaryngology head and neck surgery

Zhang Gaowei(),Li Chunjie()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-02-26 Revised:2021-06-15 Online:2021-09-01 Published:2021-09-10
  • Contact: Chunjie Li
  • Supported by:
    Union Project of National Natural Science Foundation of China and Shenzhen Robot Basic Research Center(U1813-213);Department of Science and Technology Application Fundamental Project of Sichuan Province(2021YJ0129)

摘要:

外科手术机器人具有优秀的可操作性,能为外科医生提供清晰的视野,辅助其在狭小的解剖空间内进行精准、微创的手术,在头颈、耳鼻喉区域具有强大的应用前景。相比于传统的开放手术,机器人手术避免了很多侵入性操作,能够降低手术对颌面部美观与功能的影响,改善患者术后生活质量。本文对近年来机器人手术技术在头颈、耳鼻喉外科的应用进行总结,归纳了在探索及实践过程中手术机器人存在的不足,并提出了未来可能的发展方向。

关键词: 口腔颌面外科, 机器人手术, 经口机器人手术, 颈淋巴清扫术, 机器人辅助手术, 耳鼻咽喉头颈外科

Abstract:

Surgical robots have superior operability, so they can provide surgeons with excellent vision, thereby enabling a precise and minimally invasive surgery in narrow anatomical spaces. Their application is widely described in otorhinolaryngology head and neck surgery. In contrast to traditional methods, robotic surgery avoids more invasive procedures, consequently reducing the effects on esthetics and function. As a result, the postoperative life quality of patients improves. This article summarizes the application of robotic surgery in otorhinolaryngology head and neck surgery in recent years, presents the shortcomings of surgical robots in exploration and practice, and proposes potential development directions.

Key words: oral and maxillofacial surgery, robotic surgery, transoral robotic surgery, neck dissection, computer assisted surgery, otorhinolaryngology head and neck surgery

中图分类号: 

  • R782.05
[1] 朱建华, 郭传瑸. 手术机器人系统在颅颌面外科中的应用及发展[J]. 华西口腔医学杂志, 2016, 34(5):534-538.
Zhu JH, Guo CB. Application and development of surgical robot systems in craniomaxillofacial surgery[J]. West China J Stomatol, 2016, 34(5):534-538.
[2] Nakayama M, Holsinger FC, Chevalier D, et al. The dawn of robotic surgery in otolaryngology-head and neck surgery[J]. Jpn J Clin Oncol, 2019, 49(5):404-411.
doi: 10.1093/jjco/hyz020 pmid: 30796834
[3] Golusiński W. Functional organ preservation surgery in head and neck cancer: transoral robotic surgery and beyond[J]. Front Oncol, 2019, 9:293.
doi: 10.3389/fonc.2019.00293 pmid: 31058091
[4] Park DA, Lee MJ, Kim SH, et al. Comparative safety and effectiveness of transoral robotic surgery versus open surgery for oropharyngeal cancer: a syste-matic review and meta-analysis[J]. Eur J Surg Oncol, 2020, 46(4 Pt A):644-649.
doi: 10.1016/j.ejso.2019.09.185
[5] Meccariello G, Cammaroto G, Montevecchi F, et al. Transoral robotic surgery for the management of obstructive sleep apnea: a systematic review and meta-analysis[J]. Eur Arch Otorhinolaryngol, 2017, 274(2):647-653.
doi: 10.1007/s00405-016-4113-3 pmid: 27221389
[6] Cambi J, Chiri ZM, De Santis S, et al. Outcomes in single-stage multilevel surgery for obstructive sleep apnea: transoral robotic surgery, expansion sphincter pharyngoplasty and septoplasty[J]. Int J Med Robot, 2019, 15(6):e2034.
[7] Turhan M, Bostanci A. Robotic tongue-base resection combined with tongue-base suspension for obstructive sleep apnea[J]. Laryngoscope, 2020, 130(9):2285-2291.
doi: 10.1002/lary.28443
[8] Cammaroto G, Stringa LM, Zhang H, et al. Alternative applications of trans-oral robotic surgery (TORS): a systematic review[J]. J Clin Med, 2020, 9(1):E201.
[9] Holsinger FC. A flexible, single-arm robotic surgical system for transoral resection of the tonsil and lateral pharyngeal wall: next-generation robotic head and neck surgery[J]. Laryngoscope, 2016, 126(4):864-869.
doi: 10.1002/lary.25724
[10] Tsang RK, Holsinger FC. Transoral endoscopic nasopharyngectomy with a flexible next-generation robotic surgical system[J]. Laryngoscope, 2016, 126(10):2257-2262.
doi: 10.1002/lary.v126.10
[11] Chen MM, Orosco RK, Lim GC, et al. Improved transoral dissection of the tongue base with a next-generation robotic surgical system[J]. Laryngoscope, 2018, 128(1):78-83.
doi: 10.1002/lary.v128.1
[12] Chan JYK, Tsang RK, Holsinger FC, et al. Prospective clinical trial to evaluate safety and feasibility of using a single port flexible robotic system for transoral head and neck surgery[J]. Oral Oncol, 2019, 94:101-105.
doi: 10.1016/j.oraloncology.2019.05.018
[13] Remacle M, Prasad V, Lawson G, et al. Transoral robotic surgery (TORS) with the Medrobotics FlexTM System: first surgical application on humans[J]. Eur Arch Otorhinolaryngol, 2015, 272(6):1451-1455.
doi: 10.1007/s00405-015-3532-x pmid: 25663191
[14] Lang S, Mattheis S, Hasskamp P, et al. A European multicenter study evaluating the flex robotic system in transoral robotic surgery[J]. Laryngoscope, 2017, 127(2):391-395.
doi: 10.1002/lary.26358
[15] Hussain T, Lang S, Haßkamp P, et al. The Flex robotic system compared to transoral laser microsurgery for the resection of supraglottic carcinomas: first results and preliminary oncologic outcomes[J]. Eur Arch Otorhinolaryngol, 2020, 277(3):917-924.
doi: 10.1007/s00405-019-05767-0 pmid: 31893297
[16] Tan Wen Sheng B, Wong P, Teo Ee Hoon C. Transoral robotic excision of laryngeal papillomas with Flex® Robotic System-a novel surgical approach[J]. Am J Otolaryngol, 2018, 39(3):355-358.
doi: 10.1016/j.amjoto.2018.03.011
[17] Persky MJ, Issa M, Bonfili JR, et al. Transoral surgery using the Flex Robotic System: initial experience in the United States[J]. Head Neck, 2018, 40(11):2482-2486.
doi: 10.1002/hed.v40.11
[18] Sethi N, Gouzos M, Padhye V, et al. Transoral robotic surgery using the Medrobotic Flex® system: the Adelaide experience[J]. J Robot Surg, 2020, 14(1):109-113.
doi: 10.1007/s11701-019-00941-2
[19] Chan JY, Tsang RK, Eisele DW, et al. Transoral robotic surgery of the parapharyngeal space: a case series and systematic review[J]. Head Neck, 2015, 37(2):293-298.
doi: 10.1002/hed.v37.2
[20] Duek I, Sviri GE, Billan S, et al. Minimally invasive surgery for resection of parapharyngeal space tumors[J]. J Neurol Surg B Skull Base, 2018, 79(3):250-256.
doi: 10.1055/s-0037-1607315
[21] Sethi N, Dale O, Vidhyadharan S, et al. Transoral robotic narrow field oropharyngectomy for tumours of the parapharyngeal space[J]. Int J Med Robot, 2020, 16(3):e2083.
[22] Duek I, Amit M, Sviri GE, et al. Combined endoscopic transcervical-transoral robotic approach for resection of parapharyngeal space tumors[J]. Head Neck, 2017, 39(4):786-790.
doi: 10.1002/hed.v39.4
[23] Walvekar RR, Peters G, Hardy E, et al. Robotic-assisted transoral removal of a bilateral floor of mouth ranulas[J]. World J Surg Oncol, 2011, 9:78.
doi: 10.1186/1477-7819-9-78 pmid: 21767364
[24] Capaccio P, Montevecchi F, Meccariello G, et al. Transoral robotic surgery for Hilo-parenchymal submandibular stones: step-by-step description and reasoned approach[J]. Int J Oral Maxillofac Surg, 2019, 48(12):1520-1524.
doi: 10.1016/j.ijom.2019.07.004
[25] Razavi C, Pascheles C, Samara G, et al. Robot-assisted sialolithotomy with sialendoscopy for the ma-nagement of large submandibular gland stones[J]. Laryngoscope, 2016, 126(2):345-351.
doi: 10.1002/lary.v126.2
[26] Bonawitz SC, Duvvuri U. Robotic-assisted FAMM flap for soft palate reconstruction[J]. Laryngoscope, 2013, 123(4):870-874.
doi: 10.1002/lary.23578
[27] Tsai YC, Liu SA, Lai CS, et al. Functional outcomes and complications of robot-assisted free flap oropharyngeal reconstruction[J]. Ann Plast Surg, 2017, 78(3 Suppl 2):S76-S82.
doi: 10.1097/SAP.0000000000001010
[28] Gorphe P, Temam S, Kolb F, et al. Cervical-transoral robotic oropharyngectomy and thin anterolate-ral thigh free flap[J]. Eur Ann Otorhinolaryngol Head Neck Dis, 2018, 135(1):71-74.
doi: S1879-7296(17)30132-1 pmid: 28927845
[29] Turner MT, Geltzeiler M, Albergotti WG, et al. Reconstruction of TORS oropharyngectomy defects wi-th the nasoseptal flap via transpalatal tunnel[J]. J Robot Surg, 2020, 14(2):311-316.
doi: 10.1007/s11701-019-00984-5
[30] Lai CS, Lu CT, Liu SA, et al. Robot-assisted microvascular anastomosis in head and neck free flap reconstruction: preliminary experiences and results[J]. Microsurgery, 2019, 39(8):715-720.
doi: 10.1002/micr.v39.8
[31] Nadjmi N. Transoral robotic cleft palate surgery[J]. Cleft Palate Craniofac J, 2016, 53(3):326-331.
doi: 10.1597/14-077
[32] Khan K, Dobbs T, Swan MC, et al. Trans-oral robo-tic cleft surgery (TORCS) for palate and posterior pharyngeal wall reconstruction: a feasibility study[J]. J Plast Reconstr Aesthet Surg, 2016, 69(1):97-100.
doi: 10.1016/j.bjps.2015.08.020
[33] Podolsky DJ, Fisher DM, Wong Riff KWY, et al. Infant robotic cleft palate surgery: a feasibility assessment using a realistic cleft palate simulator[J]. Plast Reconstr Surg, 2017, 139(2):455e-465e.
doi: 10.1097/PRS.0000000000003010
[34] Singh RP, Sung ES, Song CM, et al. Robot-assisted excision of the submandibular gland by a postauricular facelift approach: comparison with the conventional transcervical approach[J]. Br J Oral Maxillofac Surg, 2017, 55(10):1030-1034.
doi: S0266-4356(17)30723-4 pmid: 29122340
[35] Lira RB Chulam TC de Carvalho GB, et al. Retroauricular endoscopic and robotic versus conventio-nal neck dissection for oral cancer[J]. J Robot Surg, 2018, 12(1):117-129.
doi: 10.1007/s11701-017-0706-0
[36] Ji YB, Song CM, Bang HS, et al. Functional and cosmetic outcomes of robot-assisted neck dissection by a postauricular facelift approach for head and ne-ck cancer[J]. Oral Oncol, 2017, 70:51-57.
doi: 10.1016/j.oraloncology.2017.05.014
[37] Rao V, Subash A, Sinha P, et al. Modified facelift approach for posterior segmental mandibulectomy: a blend of oncology and cosmesis[J]. Eur Arch Otorhinolaryngol, 2020, 277(4):1205-1210.
doi: 10.1007/s00405-020-05793-3
[38] Rao V, Prasad R, Subash A, et al. Technique of flap elevation for robot assisted selective neck dissection via retroauricular approach: a surgeon’s guide[J]. J Robot Surg, 2020, 14(2):337-341.
doi: 10.1007/s11701-019-00992-5
[39] Kim CH, Chang JW, Choi EC, et al. Robotically assisted selective neck dissection in parotid gland cancer: preliminary report[J]. Laryngoscope, 2013, 123(3):646-650.
doi: 10.1002/lary.23716
[40] Zhu JH, Deng J, Liu XJ, et al. Prospects of robot-assisted mandibular reconstruction with fibula flap: comparison with a computer-assisted navigation system and freehand technique[J]. J Reconstr Microsurg, 2016, 32(9):661-669.
doi: 10.1055/s-0036-1584805
[41] Woo SY, Lee SJ, Yoo JY, et al. Autonomous bone reposition around anatomical landmark for robot-assisted orthognathic surgery[J]. J Craniomaxillofac Surg, 2017, 45(12):1980-1988.
doi: 10.1016/j.jcms.2017.09.001
[42] Ahn J, Choi H, Hong J, et al. Tracking accuracy of a stereo camera-based augmented reality navigation system for orthognathic surgery[J]. J Oral Maxillofac Surg, 2019, 77(5): 1070.e1-1070.e11.
[43] Chao AH, Weimer K, Raczkowsky J, et al. Pre-programmed robotic osteotomies for fibula free flap man-dible reconstruction: a preclinical investigation[J]. Microsurgery, 2016, 36(3):246-249.
doi: 10.1002/micr.30013
[44] Augello M, Baetscher C, Segesser M, et al. Performing partial mandibular resection, fibula free flap reconstruction and midfacial osteotomies with a cold ablation and robot-guided Er: YAG laser osteotome (CARLO®)-a study on applicability and effectiveness in human cadavers[J]. J Craniomaxillofac Surg, 2018, 46(10):1850-1855.
doi: 10.1016/j.jcms.2018.08.001
[45] Chalmers R, Schlabe J, Yeung E, et al. Robot-assisted reconstruction in head and neck surgical oncology: the evolving role of the reconstructive microsurgeon[J]. ORL J Otorhinolaryngol Relat Spec, 2018, 80(3/4):178-185.
doi: 10.1159/000492787
[46] Tamaki A, Rocco JW, Ozer E. The future of robotic surgery in otolaryngology-head and neck surgery[J]. Oral Oncol, 2020, 101:104510.
doi: S1368-8375(19)30421-X pmid: 31841882
[1] 毕小琴,熊茂婧,陈丽先,白沅艳,田莉,杨晖. 新型冠状病毒肺炎疫情下口腔颌面外科的护理防控[J]. 国际口腔医学杂志, 2020, 47(2): 244-248.
[2] 王珂, 项涛, 汤亚玲, 梁新华. 3D打印技术在口腔颌面外科实验教学中的应用[J]. 国际口腔医学杂志, 2018, 45(1): 119-124.
[3] 李侃 廖贵清. 颈淋巴清扫术后胸锁关节脱位、过度增大的研究进展[J]. 国际口腔医学杂志, 2015, 42(6): 724-727.
[4] 肖逊1综述 罗云2审校. 糖尿病患者口腔颌面外科围手术期的风险和预防[J]. 国际口腔医学杂志, 2011, 38(6): 712-716.
[5] 钟时春综述 张志光审校. 单侧颈淋巴清扫术切口的研究进展[J]. 国际口腔医学杂志, 2009, 36(4): 459-461.
[6] 高超综述 汤炜, 田卫东审校. 手术导航系统在口腔颌面外科中的应用[J]. 国际口腔医学杂志, 2008, 35(4): 447-447~449.
[7] 郑家伟,邱蔚六. 头颈鳞癌颈淋巴结临床阴性患者的诊断及治疗[J]. 国际口腔医学杂志, 2004, 31(06): 455-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .