国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (5): 556-562.doi: 10.7518/gjkq.2021099

• 综述 • 上一篇    下一篇

卵泡抑素在口腔颌面部发育中的作用及其治疗应用前景

刘嘉程1(),孟昭松2,李宏捷1,隋磊3()   

  1. 1.天津医科大学口腔医院病理科 天津 300070
    2.天津医科大学口腔医院口腔颌面外科 天津 300070
    3.天津医科大学口腔医院修复科 天津 300070
  • 收稿日期:2021-02-21 修回日期:2021-06-06 出版日期:2021-09-01 发布日期:2021-09-10
  • 通讯作者: 隋磊
  • 作者简介:刘嘉程,学士,Email: 928299023@qq.com
  • 基金资助:
    国家自然科学基金(81700927)

The role of follistatin in oral and maxillofacial development and its therapeutic application prospect

Liu Jiacheng1(),Meng Zhaosong2,Li Hongjie1,Sui Lei3()   

  1. 1. Dept. of Pathology, School & Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
    2. Dept. of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
    3. Dept. of Prosthodontics, School & Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
  • Received:2021-02-21 Revised:2021-06-06 Online:2021-09-01 Published:2021-09-10
  • Contact: Lei Sui
  • Supported by:
    National Natural Science Foundation of China(81700927)

摘要:

卵泡抑素(FST)是一种由垂体、肝、骨等多种组织合成分泌的单链糖蛋白,广泛分布于人体组织中,具有多种生理病理功能。体内外实验证实FST在炎症、骨损伤、肌肉萎缩等方面均有治疗价值。FST在维持口腔颌面部组织内环境稳态中发挥了关键作用,具有治疗口腔炎症、颌骨损伤等疾病的潜在价值,对牙齿、唇、腭、颌骨等软硬组织的发育也非常重要。FST在口腔颌面部上皮和间充质组织中均有表达,通过结合激活素和骨形态发生蛋白拮抗转化生长因子β信号通路,参与调控口腔颌面部的组织发育和相关疾病的发生发展。本文着重阐述FST在口腔颌面部发育及疾病中的作用、机制和应用前景,旨在为其在口腔医学领域的进一步研究和临床应用奠定基础。

关键词: 卵泡抑素, 生长发育, 鳞状细胞癌, 炎症, 骨再生

Abstract:

Follistatin (FST) is a single-chain glycoprotein synthesized and secreted by pituitary, liver, bone, and other tissues. It has extensive tissue distribution and a variety of physiological and pathological functions proven to have therapeutic value in inflammation, bone injury, and muscle atrophy by in vivo and in vitro experiments. Recent studies have demonstrated that FST plays a key role in maintaining the homeostasis of oral and maxillofacial tissues. FST has potential value in the treatment of oral inflammation, bone injury, and other diseases and is particularly important for the development of soft and hard tissues, such as teeth, lip, palate, and jaw. FST expresses in oral and maxillofacial epithelium and mesenchyme, where it antagonizes the transforming growth factor-β signaling pathway through binding to activin and bone morphogenetic proteins. Therefore, it participates in the regulation of oral and maxillofacial development as well as the occurrence and development of related diseases. This paper focuses on the role, mechanism, and application prospect of FST in oral and maxillofacial development and diseases in order to lay a foundation for its further research and clinical application in the field of stomatology.

Key words: follistatin, growth and development, squamous cell cancer, inflammation, bone regeneration

中图分类号: 

  • R782

图1

FST调控ACT、BMPs信号通路的机制 ACTR:ACT受体;BMPR:BMPs受体。A:Ⅰ、Ⅱ型ACTR和Ⅰ、Ⅱ型BMPR均位于细胞膜跨膜区域;①ACT、BMPs首先在细胞膜外与Ⅰ型及Ⅱ型受体形成复合体;②使Ⅰ型受体于膜内磷酸化,实现胞外到胞内的信号传导;③磷酸化的Ⅰ型受体招募并磷酸化Smads;④磷酸化的Smads招募Smad4,使其与磷酸化的Smads形成复合体;⑤该复合体入核,调控下游基因的表达。B:FST组成头尾相连的二聚体,在膜外与ACT二聚体结合,阻止ACT与受体结合,阻断信号传导。C:FST在膜外与BMPs、BMPR组成三聚体,抑制Ⅰ型BMPR磷酸化,阻断信号传导。"

表 1

FST靶蛋白信号通路组分在口腔颌面部的分布、功能及FST作用机制"

信号通路 信号蛋白 主要表达细胞 生理功能 FST作用机制
ACT信号
通路
ACT[16-17,34] 牙间充质细胞、成骨细胞 参与早期骨和牙胚的形成及破骨细胞分化 FST二聚体与ACT二聚体构成复合体,使ACT与受体结合受阻
Smad2[18,29,38] 牙上皮、间充质细胞、成牙本质细胞、单核巨噬细胞 参与中胚层和下颌骨的发育,调控釉质、牙本质、破骨细胞的形成 磷酸化受阻
Smad3[18,38] 同Smad2 调控釉质、牙本质的形成和破骨细胞分化 同Smad2
通用传导
蛋白
Smad4[19-20,30] 牙上皮、间充质细胞、成牙本质细胞 参与第一鳃弓、面突和正常牙体的发育,维持牙源性干细胞稳态 招募及入核受阻
BMP信号
通路
BMP2[21-23,28,34] 成骨细胞、牙上皮、间充质细胞、成牙本质细胞 参与早期骨形成及腭发育、牙根发育,促进成牙本质细胞和成釉细胞分化 1分子FST、1分子BMP与1分子Ⅱ型BMP受体构成复合体,使Ⅰ型BMP受体磷酸化受阻
BMP4[16,28,39] 成骨细胞、成釉细胞、牙间充质细胞 参与早期骨形成和腭发育,调控成釉细胞分化和釉质形成,参与上皮间充质的相互作用 同BMP2
BMP7[16,24,39] 成骨细胞、前成釉细胞、前成牙本质细胞 参与早期骨形成,维持HERS正常结构 同BMP2
Smad1[21-23,36-37] 同BMP2 参与BMP2的生理过程 磷酸化受阻
Smad5[21-23,36-37] 同BMP2 参与BMP2的生理过程 同Smad1
Smad8[21-23,36-37] 同BMP2 参与BMP2的生理过程 同Smad1
Smad9[36] 成骨细胞 参与BMP2骨调控过程 同Smad1
GDF11[25,26] 胚胎期面部上皮、间充质细胞 参与唇、腭发育 FST二聚体与GDF11二聚体构成复合体,使GDF11与受体结合受阻

图2

FST的治疗应用前景 A:FST通过抑制ACT信号通路治疗口腔鳞状细胞癌;B:FST通过抑制ACT信号通路治疗口腔炎症性疾病;C:FST通过调控ACT、BMPs信号通路促进颌骨损伤后再生及正畸骨改建。"

[1] Rajput SK, Yang C, Ashry M, et al. Role of bone morphogenetic protein signaling in bovine early embryonic development and stage specific embryotro-pic actions of follistatin[J]. Biol Reprod, 2020, 102(4):795-805.
doi: 10.1093/biolre/ioz235
[2] Fang DY, Lu B, Hayward S, et al. The role of activin A and B and the benefit of follistatin treatment in renal ischemia-reperfusion injury in mice[J]. Transplant Direct, 2016, 2(7):e87.
[3] Shi L, Resaul J, Owen S, et al. Clinical and therapeutic implications of follistatin in solid tumours[J]. Cancer Genomics Proteomics, 2016, 13(6):425-435.
doi: 10.21873/cgp
[4] Shoji-Kasai Y, Ageta H, Hasegawa Y, et al. Activin increases the number of synaptic contacts and the length of dendritic spine necks by modulating spinal actin dynamics[J]. J Cell Sci, 2007, 120(Pt 21):3830-3837.
pmid: 17940062
[5] Walker RG, Poggioli T, Katsimpardi L, et al. Biochemistry and biology of GDF11 and myostatin: similarities, differences, and questions for future investigation[J]. Circ Res, 2016, 118(7):1125-1141, 1142.
doi: 10.1161/CIRCRESAHA.116.308391 pmid: 27034275
[6] Seachrist DD, Keri RA. The activin social network: activin, inhibin, and follistatin in breast development and cancer[J]. Endocrinology, 2019, 160(5):1097-1110.
doi: 10.1210/en.2019-00015 pmid: 30874767
[7] Zhang LD, Liu KL, Han B, et al. The emerging role of follistatin under stresses and its implications in diseases[J]. Gene, 2018, 639:111-116.
doi: 10.1016/j.gene.2017.10.017
[8] Schneyer AL, Wang QF, Sidis Y, et al. Differential distribution of follistatin isoforms: application of a new FS315-specific immunoassay[J]. J Clin Endocrinol Metab, 2004, 89(10):5067-5075.
doi: 10.1210/jc.2004-0162
[9] Patel K. Follistatin[J]. Int J Biochem Cell Biol, 1998, 30(10):1087-1093.
doi: 10.1016/S1357-2725(98)00064-8
[10] Hansen JS, Plomgaard P. Circulating follistatin in relation to energy metabolism[J]. Mol Cell Endocrinol, 2016, 433:87-93.
doi: 10.1016/j.mce.2016.06.002
[11] Olsen OE, Hella H, Elsaadi S, et al. Activins as dual specificity TGF-β family molecules: SMAD-activation via activin- and BMP-type 1 receptors[J]. Biomolecules, 2020, 10(4):E519.
[12] Nickel J, Mueller TD. Specification of BMP signa-ling[J]. Cells, 2019, 8(12):1579.
doi: 10.3390/cells8121579
[13] Wijayarathna R, de Kretser DM. Activins in reproductive biology and beyond[J]. Hum Reprod Update, 2016, 22(3):342-357.
doi: 10.1093/humupd/dmv058 pmid: 26884470
[14] Sidis Y, Mukherjee A, Keutmann H, et al. Biological activity of follistatin isoforms and follistatin-like-3 is dependent on differential cell surface binding and specificity for activin, myostatin, and bone morphogenetic proteins[J]. Endocrinology, 2006, 147(7):3586-3597.
doi: 10.1210/en.2006-0089
[15] Hashimoto O, Kawasaki N, Tsuchida K, et al. Difference between follistatin isoforms in the inhibition of activin signalling: activin neutralizing activity of follistatin isoforms is dependent on their affinity for activin[J]. Cell Signal, 2000, 12(8):565-571.
pmid: 11027950
[16] Wang XP, Suomalainen M, Jorgez CJ, et al. Follis-tatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting BMP signaling and ameloblast differentiation[J]. Dev Cell, 2004, 7(5):719-730.
doi: 10.1016/j.devcel.2004.09.012
[17] Ferguson CA, Tucker AS, Christensen L, et al. Activin is an essential early mesenchymal signal in too-th development that is required for patterning of the murine dentition[J]. Genes Dev, 1998, 12(16):2636-2649.
doi: 10.1101/gad.12.16.2636
[18] Li S, Pan Y. Immunolocalization of connective tissue growth factor, transforming growth factor-beta1 and phosphorylated-SMAD2/3 during the postnatal tooth development and formation of junctional epithelium[J]. Ann Anat, 2018, 216:52-59.
doi: 10.1016/j.aanat.2017.10.005
[19] Li JY, Feng JF, Liu Y, et al. BMP-SHH signaling network controls epithelial stem cell fate via regulation of its niche in the developing tooth[J]. Dev Cell, 2015, 33(2):125-135.
doi: 10.1016/j.devcel.2015.02.021
[20] Gao YR, Yang G, Weng TJ, et al. Disruption of Smad4 in odontoblasts causes multiple keratocystic odontogenic tumors and tooth malformation in mice[J]. Mol Cell Biol, 2009, 29(21):5941-5951.
doi: 10.1128/MCB.00706-09
[21] Liu J, Saito K, Maruya Y, et al. Mutant GDF5 enhan-ces ameloblast differentiation via accelerated BMP2-induced Smad1/5/8 phosphorylation[J]. Sci Rep, 2016, 6:23670.
doi: 10.1038/srep23670
[22] Fujiwara N, Lee JW, Kumakami-Sakano M, et al. Harmine promotes molar root development via SMAD1/5/8 phosphorylation[J]. Biochem Biophys Res Commun, 2018, 497(3):924-929.
doi: 10.1016/j.bbrc.2017.12.062
[23] Jani P, Liu C, Zhang H, et al. The role of bone morphogenetic proteins 2 and 4 in mouse dentinogenesis[J]. Arch Oral Biol, 2018, 90:33-39.
doi: 10.1016/j.archoralbio.2018.02.004
[24] Zhang R, Teng Y, Zhu L, et al. Odontoblast β-catenin signaling regulates fenestration of mouse Hertwig’s epithelial root sheath[J]. Sci China Life Sci, 2015, 58(9):876-881.
doi: 10.1007/s11427-015-4882-8 pmid: 26208822
[25] Cox TC, Lidral AC, McCoy JC, et al. Mutations in GDF11 and the extracellular antagonist, follistatin, as a likely cause of Mendelian forms of orofacial clefting in humans[J]. Hum Mutat, 2019, 40(10):1813-1825.
doi: 10.1002/humu.v40.10
[26] Gokoffski KK, Wu HH, Beites CL, et al. Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate[J]. Development, 2011, 138(19):4131-4142.
doi: 10.1242/dev.065870 pmid: 21852401
[27] Chu EY, Tamasas B, Fong H, et al. Full spectrum of postnatal tooth phenotypes in a novel Irf6 cleft lip model[J]. J Dent Res, 2016, 95(11):1265-1273.
doi: 10.1177/0022034516656787 pmid: 27369589
[28] Iwata J, Parada C, Chai Y. The mechanism of TGF-β signaling during palate development[J]. Oral Dis, 2011, 17(8):733-744.
doi: 10.1111/j.1601-0825.2011.01806.x pmid: 21395922
[29] Nomura M, Li E. Smad2 role in mesoderm formation, left-right patterning and craniofacial development[J]. Nature, 1998, 393(6687):786-790.
doi: 10.1038/31693
[30] Ko SO, Chung IH, Xu X, et al. Smad4 is required to regulate the fate of cranial neural crest cells[J]. Dev Biol, 2007, 312(1):435-447.
doi: 10.1016/j.ydbio.2007.09.050
[31] Inoue S, Nomura S, Hosoi T, et al. Localization of follistatin, an activin-binding protein, in bone tissues[J]. Calcif Tissue Int, 1994, 55(5):395-397.
doi: 10.1007/BF00299321
[32] Funaba M, Ogawa K, Murata T, et al. Follistatin and activin in bone: expression and localization during endochondral bone development[J]. Endocrinology, 1996, 137(10):4250-4259.
pmid: 8828484
[33] Glister C, Kemp CF, Knight PG. Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin[J]. Reproduction, 2004, 127(2):239-254.
pmid: 15056790
[34] Fahmy-Garcia S, Farrell E, Witte-Bouma J, et al. Follistatin effects in migration, vascularization, and osteogenesis in vitro and bone repair in vivo[J]. Front Bioeng Biotechnol, 2019, 7:38.
doi: 10.3389/fbioe.2019.00038
[35] Abe Y, Abe T, Aida Y, et al. Follistatin restricts bone morphogenetic protein (BMP)-2 action on the diffe-rentiation of osteoblasts in fetal rat mandibular cells[J]. J Bone Miner Res, 2004, 19(8):1302-1307.
doi: 10.1359/JBMR.040408
[36] Kim KM, Kim DY, Lee DS, et al. Peroxiredoxin Ⅱ negatively regulates BMP2-induced osteoblast differentiation and bone formation via PP2A Cα-media-ted Smad1/5/9 dephosphorylation[J]. Exp Mol Med, 2019, 51(6):1-11.
[37] Choi H, Jeong BC, Kook MS, et al. Betulinic acid synergically enhances BMP2-induced bone formation via stimulating Smad 1/5/8 and p38 pathways[J]. J Biomed Sci, 2016, 23(1):45.
doi: 10.1186/s12929-016-0260-5
[38] Kajita T, Ariyoshi W, Okinaga T, et al. Mechanisms involved in enhancement of osteoclast formation by activin-A[J]. J Cell Biochem, 2018, 119(8):6974-6985.
doi: 10.1002/jcb.v119.8
[39] Wu MR, Chen GQ, Li YP. TGF-β and BMP signa-ling in osteoblast, skeletal development, and bone formation, homeostasis and disease[J]. Bone Res, 2016, 4:16009.
doi: 10.1038/boneres.2016.9
[40] Yaden BC, Croy JE, Wang Y, et al. Follistatin: a no-vel therapeutic for the improvement of muscle regeneration[J]. J Pharmacol Exp Ther, 2014, 349(2):355-371.
doi: 10.1124/jpet.113.211169
[41] Giesige CR, Wallace LM, Heller KN, et al. AAV-mediated follistatin gene therapy improves functio-nal outcomes in the TIC-DUX4 mouse model of FSHD[J]. JCI Insight, 2018, 3(22):123538.
[42] Mendell JR, Sahenk Z, Al-Zaidy S, et al. Follistatin gene therapy for sporadic inclusion body myositis improves functional outcomes[J]. Mol Ther, 2017, 25(4):870-879.
doi: S1525-0016(17)30092-8 pmid: 28279643
[43] Chen Y, Rothnie C, Spring D, et al. Regulation and actions of activin A and follistatin in myocardial is-chaemia-reperfusion injury[J]. Cytokine, 2014, 69(2):255-262.
doi: 10.1016/j.cyto.2014.06.017 pmid: 25052838
[44] Hardy CL, King SJ, Mifsud NA, et al. The activin A antagonist follistatin inhibits cystic fibrosis-like lung inflammation and pathology[J]. Immunol Cell Biol, 2015, 93(6):567-574.
doi: 10.1038/icb.2015.7
[45] Chang KP, Kao HK, Liang Y, et al. Overexpression of activin A in oral squamous cell carcinoma: association with poor prognosis and tumor progression[J]. Ann Surg Oncol, 2010, 17(7):1945-1956.
doi: 10.1245/s10434-010-0926-2
[46] Bufalino A, Cervigne NK, de Oliveira CE, et al. Low miR-143/miR-145 cluster levels induce activin A overexpression in oral squamous cell carcinomas, which contributes to poor prognosis[J]. PLoS One, 2015, 10(8):e0136599.
doi: 10.1371/journal.pone.0136599
[47] Ervolino De Oliveira C, Dourado MR, Sawazaki-Calone Í, et al. Activin A triggers angiogenesis via regulation of VEGFA and its overexpression is associated with poor prognosis of oral squamous cell carcinoma[J]. Int J Oncol, 2020, 57(1):364-376.
doi: 10.3892/ijo.2020.5058 pmid: 32377747
[48] Omar NN, Rashed RR, El-Hazek RM, et al. Platelet-rich plasma-induced feedback inhibition of activin A/follistatin signaling: a mechanism for tumor-low risk skin rejuvenation in irradiated rats[J]. J Photochem Photobiol B, 2018, 180:17-24.
doi: 10.1016/j.jphotobiol.2018.01.024
[49] Forrester HB, de Kretser DM, Leong T, et al. Follistatin attenuates radiation-induced fibrosis in a murine model[J]. PLoS One, 2017, 12(3):e0173788.
doi: 10.1371/journal.pone.0173788
[50] Hedger MP, Winnall WR, Phillips DJ, et al. The re-gulation and functions of activin and follistatin in inflammation and immunity[J]. Vitam Horm, 2011, 85:255-297.
doi: 10.1016/B978-0-12-385961-7.00013-5 pmid: 21353885
[51] Jones KL, Mansell A, Patella S, et al. Activin A is a critical component of the inflammatory response, and its binding protein, follistatin, reduces mortality in endotoxemia[J]. Proc Natl Acad Sci U S A, 2007, 104(41):16239-16244.
doi: 10.1073/pnas.0705971104
[52] 姚淑东, 宋庆高, 邓金勇, 等. 硬腭骨膜牵张成骨过程中ACTA和FS的表达研究[J]. 实用口腔医学杂志, 2012, 28(1):34-38.
Yao SD, Song QG, Deng JY, et al. Expression of acti-vin A and follistatin in hard palate during periosteal distraction osteogenesis[J]. J Pract Stomatol, 2012, 28(1):34-38.
[53] 闫欣, 王明锋. 正畸牙齿移动过程中Follistatin在牙周组织中表达的动物实验研究[J]. 中国医药指南, 2020, 18(2):9.
Yan X, Wang MF. Animal experimental study on expression of follistatin in periodontal tissue during orthodontic tooth movement[J]. Guid China Med, 2020, 18(2):9.
[1] 常欣楠,刘磊. 生物可降解镁基材料在颅颌面外科的应用及其研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 107-115.
[2] 刘世一, 陈中, 张素欣. 程序性死亡受体/配体免疫治疗策略在人乳头瘤病毒阳性头颈部鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 21-27.
[3] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[4] 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67.
[5] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[6] 徐书奎,张珊,谢新宇,马文盛. 上颌前方牵引矫治骨性Ⅲ类错畸形远期疗效稳定性的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 646-652.
[7] 吴佳敏,夏斌,杨禾丰,许彪. 癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 711-717.
[8] 柳江龙, 买买提吐逊·吐尔地. 超声造影在口腔鳞状细胞癌颈部转移性淋巴结诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 514-520.
[9] 李奕君, 徐子昂, 李一. 前哨淋巴结在头颈部鳞状细胞癌检测的应用进展[J]. 国际口腔医学杂志, 2023, 50(5): 521-527.
[10] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[11] 杨晓宇,袁泉. 纤维蛋白原血管外沉积在黏膜免疫中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 457-462.
[12] 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262.
[13] 盛南宁,王珏,南欣荣. 性别决定基因盒9在口腔鳞状细胞癌作用机制和治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 314-320.
[14] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[15] 李潭,梁新华. 盘状蛋白结构域受体1在调控恶性肿瘤进展和治疗中的作用[J]. 国际口腔医学杂志, 2023, 50(2): 230-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .