国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (4): 385-390.doi: 10.7518/gjkq.2021079

• 牙周专栏 • 上一篇    下一篇

氧化应激和线粒体质量控制与牙周炎关系的研究进展

丁旭1(),李鑫1,李艳1,夏博园1,于维先2,3()   

  1. 1.吉林大学口腔医院牙周科 长春 130021
    2.吉林大学口腔医院老年口腔科 长春 130021
    3.吉林省牙发育及颌骨重塑与再生重点实验室 长春 130021
  • 收稿日期:2020-12-25 修回日期:2021-03-28 出版日期:2021-07-01 发布日期:2021-06-30
  • 通讯作者: 于维先
  • 作者简介:丁旭,硕士,Email: 1115087326@qq.com
  • 基金资助:
    吉林省科技厅科技发展计划国际合作项目(20180414053-GH);吉林省科技厅自然科学基金(20190201058JC);吉林省财政厅科技项目(JCSZ2019378-1)

Research progress on the relationship among oxidative stress, mitochondrial quality control, and periodontitis

Ding Xu1(),Li Xin1,Li Yan1,Xia Boyuan1,Yu Weixian2,3()   

  1. 1. Dept. of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China
    2. Dept. of Geriatric Stomatology, Hospital of Stomatology, Jilin University, Changchun 130021, China
    3. Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
  • Received:2020-12-25 Revised:2021-03-28 Online:2021-07-01 Published:2021-06-30
  • Contact: Weixian Yu
  • Supported by:
    International Cooperation Project of Science and Technology Development Plan of Science and Technology Department of Jilin Province(20180414053-GH);Natural Science Foundation of Science and Technology Department of Jilin Province(20190201058JC);Science and Technology Project of Finance Department of Jilin Pro-vince(JCSZ2019378-1)

摘要:

牙周炎主要是由菌斑微生物引起的牙周支持组织的慢性炎症性疾病。近年来,关于线粒体质量控制与牙周炎之间的关系受到学者们的广泛关注。线粒体质量控制包括线粒体的生物发生、动力学和自噬三部分,任何一个部分紊乱都会导致线粒体功能障碍,进而诱发相关疾病。氧化应激会导致线粒体质量控制失衡,可能在牙周炎发展中起关键作用。本文就氧化应激、过氧化物酶体增殖物激活受体-γ共激活因子1 α、核呼吸因子1/2、有丝分裂蛋白1/2、动力蛋白相关蛋白1、PTEN诱导的假定激酶1等蛋白引起线粒体功能障碍在牙周炎中的相关研究进展进行综述,旨在为牙周炎的防治提供新的思路。

关键词: 线粒体, 氧化应激, 牙周炎

Abstract:

Periodontitis is a chronic inflammation of the periodontal supporting tissue caused by plaque microorga-nisms. In recent years, scholars have paid close attention to the relationship between mitochondrial quality control and periodontitis. Mitochondrial quality control includes mitochondrial biogenesis, kinetics, and autophagy. Any part of the disorder will lead to mitochondrial dysfunction and then induce the occurrence of related diseases. Some scholars have pointed out that oxidative stress can lead to an imbalance in mitochondrial quality control, which plays a key role in the development of periodontitis. This article reviews the research progress of mitochondrial dysfunction caused by oxidative stress, peroxisome-proliferator-activated receptor-gamma co-activator 1α, nuclear respiratory factor 1/2, mitofusin 1/2, dynamin related protein 1, PTEN-induced putative kinase 1 and other proteins in periodontitis. It aims to provide new ideas for the prevention and treatment of periodontitis.

Key words: mitochondria, oxidative stress, perio-dontitis

中图分类号: 

  • R781.4
[1] Vasconcelos ACCG, Vasconcelos DFP, Pereira da Silva FR, et al. Periodontitis causes abnormalities in the liver of rats[J]. J Periodontol, 2019,90(3):295-305.
doi: 10.1002/JPER.18-0226
[2] Bhattarai G, Poudel SB, Kook SH, et al. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis[J]. Acta Biomater, 2016,29:398-408.
doi: S1742-7061(15)30161-6 pmid: 26497626
[3] Kondadi AK, Anand R, Reichert AS. Functional interplay between cristae biogenesis, mitochondrial dynamics and mitochondrial DNA integrity[J]. Int J Mol Sci, 2019,20(17):E4311.
[4] Govindaraj P, Khan NA, Gopalakrishna P, et al. Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis[J]. Mitochondrion, 2011,11(3):504-512.
doi: 10.1016/j.mito.2011.01.009
[5] Chen YT, Ji YH, Jin X, et al. Mitochondrial abnormalities are involved in periodontal ligament fibroblast apoptosis induced by oxidative stress[J]. Biochem Biophys Res Commun, 2019,509(2):483-490.
doi: 10.1016/j.bbrc.2018.12.143
[6] Sun XY, Mao YX, Dai PP, et al. Mitochondrial dysfunction is involved in the aggravation of periodontitis by diabetes[J]. J Clin Periodontol, 2017,44(5):463-471.
doi: 10.1111/jcpe.2017.44.issue-5
[7] Picca A, Mankowski RT, Burman JL, et al. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing[J]. Nat Rev Cardiol, 2018,15(9):543-554.
doi: 10.1038/s41569-018-0059-z pmid: 30042431
[8] Whitaker RM, Corum D, Beeson CC, et al. Mitochondrial biogenesis as a pharmacological target: a new approach to acute and chronic diseases[J]. Annu Rev Pharmacol Toxicol, 2016,56:229-249.
doi: 10.1146/annurev-pharmtox-010715-103155
[9] Wu NN, Zhang YM, Ren J. Mitophagy, mitochondrial dynamics, and homeostasis in cardiovascular aging[J]. Oxidative Med Cell Longev, 2019,2019:1-15.
[10] Chandel NS. Mitochondria as signaling organelles[J]. BMC Biol, 2014,12:34.
doi: 10.1186/1741-7007-12-34
[11] Zhu JH, Wang KZ, Chu CT. After the banquet: mitochondrial biogenesis, mitophagy, and cell survival[J]. Autophagy, 2013,9(11):1663-1676.
doi: 10.4161/auto.24135
[12] Vasileiou P, Evangelou K, Vlasis K, et al. Mitochondrial homeostasis and cellular senescence[J]. Cells, 2019,8(7):686.
doi: 10.3390/cells8070686
[13] Fu WY, Liu Y, Yin H. Mitochondrial dynamics: biogenesis, fission, fusion, and mitophagy in the regulation of stem cell behaviors[J]. Stem Cells Int, 2019,2019:9757201.
[14] Chang JS, Huypens P, Zhang YB, et al. Regulation of NT-PGC-1alpha subcellular localization and function by protein kinase A-dependent modulation of nuclear export by CRM1[J]. J Biol Chem, 2010,285(23):18039-18050.
doi: 10.1074/jbc.M109.083121
[15] Granata C, Jamnick NA, Bishop DJ. Principles of e-xercise prescription, and how they influence exercise-induced changes of transcription factors and other regulators of mitochondrial biogenesis[J]. Sports Med, 2018,48(7):1541-1559.
doi: 10.1007/s40279-018-0894-4 pmid: 29675670
[16] Singh SP, Huck O, Abraham NG, et al. Kavain reduces Porphyromonas gingivalis-induced adipocyte inflammation: role of PGC-1α signaling[J]. J Immunol, 2018,201(5):1491-1499.
doi: 10.4049/jimmunol.1800321
[17] 蔡川, 黄也, 王婧, 等. 炎症微环境对牙周膜干细胞氧化应激和线粒体生成的影响[J]. 中华老年口腔医学杂志, 2018,16(6):327-332.
Cai C, Huang Y, Wang J, et al. Effects of inflamma-tory microenvironment on the oxidative stress and mitochondriogenesis of human periodontal ligament stem cells[J]. Chin J Geriatr Dent, 2018,16(6):327-332.
[18] Hong RD, Wang ZG, Sui AH, et al. Gingival mesenchymal stem cells attenuate pro-inflammatory ma-crophages stimulated with oxidized low-density lipoprotein and modulate lipid metabolism[J]. Arch Oral Biol, 2019,98:92-98.
doi: 10.1016/j.archoralbio.2018.11.007
[19] Hayashi G, Jasoliya M, Sahdeo S, et al. Dimethyl fumarate mediates Nrf2-dependent mitochondrial biogenesis in mice and humans[J]. Hum Mol Genet, 2017,26(15):2864-2873.
doi: 10.1093/hmg/ddx167
[20] Fão L, Mota SI, Rego AC. Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s di-seases[J]. Ageing Res Rev, 2019,54:100942.
doi: 10.1016/j.arr.2019.100942
[21] Park SY, Park DJ, Kim YH, et al. Schisandra chinensis α-iso-cubebenol induces heme oxygenase-1 expression through PI3K/Akt and Nrf2 signaling and has anti-inflammatory activity in Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages[J]. Int Immunopharmacol, 2011,11(11):1907-1915.
doi: 10.1016/j.intimp.2011.07.023
[22] Sima C, Aboodi GM, Lakschevitz FS, et al. Nuclear factor erythroid 2-related factor 2 down-regulation in oral neutrophils is associated with periodontal o-xidative damage and severe chronic periodontitis[J]. Am J Pathol, 2016,186(6):1417-1426.
doi: 10.1016/j.ajpath.2016.01.013
[23] Chiu AV, Saigh MA, McCulloch CA, et al. The role of NrF2 in the regulation of periodontal health and disease[J]. J Dent Res, 2017,96(9):975-983.
doi: 10.1177/0022034517715007
[24] Harder B, Jiang T, Wu TD, et al. Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention[J]. Biochem Soc Trans, 2015,43(4):680-686.
doi: 10.1042/BST20150020
[25] Murata H, Takamatsu H, Liu SL, et al. NRF2 regulates PINK1 expression under oxidative stress conditions[J]. PLoS One, 2015,10(11):e0142438.
doi: 10.1371/journal.pone.0142438
[26] Kataoka K, Ekuni D, Tomofuji T, et al. Visualization of oxidative stress induced by experimental pe-riodontitis in Keap1-dependent oxidative stress detector-luciferase mice[J]. Int J Mol Sci, 2016,17(11):E1907.
[27] Zhu CH, Zhao Y, Wu XY, et al. The therapeutic role of baicalein in combating experimental periodontitis with diabetes via Nrf2 antioxidant signaling pathway[J]. J Periodontal Res, 2020,55(3):381-391.
doi: 10.1111/jre.v55.3
[28] Kanzaki H, Shinohara F, Kajiya M, et al. Nuclear Nrf2 induction by protein transduction attenuates osteoclastogenesis[J]. Free Radic Biol Med, 2014,77:239-248.
doi: 10.1016/j.freeradbiomed.2014.09.006
[29] Hyeon S, Lee H, Yang Y, et al. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation[J]. Free Radic Biol Med, 2013,65:789-799.
doi: 10.1016/j.freeradbiomed.2013.08.005
[30] Liu YL, Yang HX, Wen Y, et al. Nrf2 inhibits perio-dontal ligament stem cell apoptosis under excessive oxidative stress[J]. Int J Mol Sci, 2017,18(5):E1076.
[31] Larsson NG, Wang J, Wilhelmsson H, et al. Mitochondrial transcription factor A is necessary for mt-DNA maintenance and embryogenesis in mice[J]. Nat Genet, 1998,18(3):231-236.
pmid: 9500544
[32] Ekstrand MI, Terzioglu M, Galter D, et al. Progressive Parkinsonism in mice with respiratory-chain-deficient dopamine neurons[J]. Proc Natl Acad Sci U S A, 2007,104(4):1325-1330.
pmid: 17227870
[33] Miyazaki T, Iwasawa M, Nakashima T, et al. Intracellular and extracellular ATP coordinately regulate the inverse correlation between osteoclast survival and bone resorption[J]. J Biol Chem, 2012,287(45):37808-37823.
doi: 10.1074/jbc.M112.385369
[34] Bullón P, Román-Malo L, Marín-Aguilar F, et al. Lipophilic antioxidants prevent lipopolysaccharide-induced mitochondrial dysfunction through mitochondrial biogenesis improvement[J]. Pharmacol Res, 2015,91:1-8.
doi: 10.1016/j.phrs.2014.10.007
[35] Anand R, Wai T, Baker MJ, et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission[J]. J Cell Biol, 2014,204(6):919-929.
doi: 10.1083/jcb.201308006
[36] Tondera D, Grandemange S, Jourdain A, et al. SLP-2 is required for stress-induced mitochondrial hyperfusion[J]. EMBO J, 2009,28(11):1589-1600.
doi: 10.1038/emboj.2009.89
[37] Sharma A, Smith HJ, Yao P, et al. Causal roles of mitochondrial dynamics in longevity and healthy a-ging[J]. EMBO Rep, 2019,20(12):e48395.
[38] 翟启明, 李蓓, 王智伟, 等. 炎症微环境下线粒体融合蛋白2及其介导的内质网-线粒体偶联对牙周膜干细胞成骨分化能力的影响[J]. 中华口腔医学杂志, 2018,53(7):453-458.
Zhai QM, Li B, Wang ZW, et al. Endoplasmic re-ticulum-mitochondrial contact regulates osteogenic differentiation of periodontal ligament stem cells via mitofusion 2 in inflammatory microenvironment[J]. Chin J Stomatol, 2018,53(7):453-458.
[39] 翟启明, 李蓓, 刘露, 等. 线粒体融合蛋白-1对牙周膜干细胞成骨分化能力的影响[J]. 实用口腔医学杂志, 2018,34(2):172-177.
Zhai QM, Li B, Liu L, et al. Mitofusin-1 regulates osteogenic differentiation of periodontal ligament stem cells[J]. J Pract Stomatol, 2018,34(2):172-177.
[40] Thomenius M, Freel CD, Horn S, et al. Mitochon-drial fusion is regulated by reaper to modulate drosophila programmed cell death[J]. Cell Death Differ, 2011,18(10):1640-1650.
doi: 10.1038/cdd.2011.26
[41] Zhang X, Feng YF, Wang YP, et al. Resveratrol ameliorates disorders of mitochondrial biogenesis and dynamics in a rat chronic ocular hypertension model[J]. Life Sci, 2018,207:234-245.
doi: 10.1016/j.lfs.2018.06.010
[42] Gan XQ, Huang SB, Yu Q, et al. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction[J]. Biochem Biophys Res Commun, 2015,468(4):719-725.
doi: 10.1016/j.bbrc.2015.11.022
[43] He YT, Gan XQ, Zhang L, et al. CoCl2 induces apoptosis via a ROS-dependent pathway and Drp1-mediated mitochondria fission in periodontal ligament stem cells[J]. Am J Physiol Cell Physiol, 2018,315(3):C389-C397.
doi: 10.1152/ajpcell.00248.2017
[44] Rüb C, Wilkening A, Voos W. Mitochondrial quality control by the Pink1/Parkin system[J]. Cell Tissue Res, 2017,367(1):111-123.
doi: 10.1007/s00441-016-2485-8
[45] Becker D, Richter J, Tocilescu MA, et al. Pink1 kinase and its membrane potential (δψ)-dependent cleavage product both localize to outer mitochon-drial membrane by unique targeting mode[J]. J Biol Chem, 2012,287(27):22969-22987.
doi: 10.1074/jbc.M112.365700
[46] Okatsu K, Oka T, Iguchi M, et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria[J]. Nat Commun, 2012,3:1016.
doi: 10.1038/ncomms2016 pmid: 22910362
[47] Yang CN, Kok SH, Wang HW, et al. Simvastatin alleviates bone resorption in apical periodontitis possibly by inhibition of mitophagy-related osteoblast apoptosis[J]. Int Endod J, 2019,52(5):676-688.
doi: 10.1111/iej.13055 pmid: 30537112
[48] Chiricosta L, Gugliandolo A, Diomede F, et al. Mo-ringin pretreatment inhibits the expression of genes involved in mitophagy in the stem cell of the human periodontal ligament[J]. Molecules, 2019,24(18):E3217.
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[3] 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668.
[4] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[5] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[6] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[7] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[8] 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31.
[9] 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528.
[10] 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592.
[11] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
[12] 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440.
[13] 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316.
[14] 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355.
[15] 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .