国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (3): 322-328.doi: 10.7518/gjkq.2021051

• 综述 • 上一篇    下一篇

可降解医用镁基金属生物材料的研究进展

陈克难(),郭传瑸()   

  1. 北京大学口腔医学院 北京 100081
  • 收稿日期:2020-11-12 修回日期:2021-01-22 出版日期:2021-05-01 发布日期:2021-05-14
  • 通讯作者: 郭传瑸
  • 作者简介:陈克难,学士,Email: chenkenan@pku.edu.cn

Research progress on biodegradable medical magnesium-based materials

Chen Kenan(),Guo Chuanbin()   

  1. Peking University School of Stomatology, Beijing 100081, China
  • Received:2020-11-12 Revised:2021-01-22 Online:2021-05-01 Published:2021-05-14
  • Contact: Chuanbin Guo

摘要:

作为可降解生物材料,镁及镁合金具有良好的生物相容性、较小的密度、更接近骨的弹性模量、促进成骨及一定的抗感染能力等优点,在生物医用材料领域具有广阔应用前景。但是镁基金属存在降解速率过高、不均匀腐蚀导致机械完整性丧失、降解产气等缺点,这也是镁及其合金投入临床应用的难点,近年的研究致力于通过合金化和表面改性改善镁合金的微观结构进而改善其腐蚀性能和机械性能。本文就镁基金属在口腔颌面部及其他医学领域的研究进展进行综述。

关键词: 可降解生物材料, 医用镁基金属, 临床应用

Abstract:

As biodegradable biomaterials, magnesium and its alloys have good biocompatibility and low density, have similar elastic modulus as that of bone, promote osteogenesis and have certain anti-infective ability. Therefore, these materials have broad application prospect in the field of biomedical materials. However, magnesium-based materials have some defects, such as rapid corrosion rate and loss of mechanical integrity because of pitting corrosion and gas generation, which limit their application. Current research has devoted to improve the corrosion and mechanical properties of magnesium alloys through alloying and surface modification. This article provides a brief review on the research progress of magnesium-based materials in the oral and maxillofacial field and other medical fields.

Key words: biodegradable materials, medical magnesium-based metal, medical application

中图分类号: 

  • R782
[1] Zheng YF, Gu XN, Witte F. Biodegradable metals[J]. Mater Sci Eng: R: Rep, 2014,77:1-34.
doi: 10.1016/j.mser.2014.01.001
[2] Ali M, Hussein MA, Al-Aqeeli N. Magnesium-based composites and alloys for medical applications: a review of mechanical and corrosion properties[J]. J Alloy Compd, 2019,792:1162-1190.
doi: 10.1016/j.jallcom.2019.04.080
[3] Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review[J]. Biomaterials, 2006,27(9):1728-1734.
pmid: 16246414
[4] Eliaz N, Metoki N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications[J]. Materials (Basel), 2017,10(4):E334.
[5] Nagels J, Stokdijk M, Rozing PM. Stress shielding and bone resorption in shoulder arthroplasty[J]. J Shoulder Elbow Surg, 2003,12(1):35-39.
doi: 10.1067/mse.2003.22
[6] Munir K, Lin JX, Wen CE, et al. Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications[J]. Acta Biomater, 2020,102:493-507.
doi: 10.1016/j.actbio.2019.12.001
[7] Ali M, Elsherif M, Salih AE, et al. Surface modification and cytotoxicity of Mg-based bio-alloys: an overview of recent advances[J]. J Alloy Compd, 2020,825:154140.
doi: 10.1016/j.jallcom.2020.154140
[8] Saris NE, Mervaala E, Karppanen H, et al. Magnesium. An update on physiological, clinical and analytical aspects[J]. Clin Chim Acta, 2000,294(1/2):1-26.
doi: 10.1016/S0009-8981(99)00258-2
[9] Charyeva O, Dakischew O, Sommer U, et al. Biocompatibility of magnesium implants in primary human reaming debris-derived cells stem cells in vitro[J]. J Orthop Traumatol, 2016,17(1):63-73.
doi: 10.1007/s10195-015-0364-9 pmid: 26153416
[10] Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys[J]. Biomaterials, 2006,27(7):1013-1018.
doi: 10.1016/j.biomaterials.2005.07.037
[11] Dorozhkin SV. Calcium orthophosphates[J]. J Mater Sci, 2007,42(4):1061-1095.
doi: 10.1007/s10853-006-1467-8
[12] Amberg R, Elad A, Beuer F, et al. Effect of physical cues of altered extract media from biodegradable magnesium implants on human gingival fibroblasts[J]. Acta Biomater, 2019,98:186-195.
doi: S1742-7061(19)30502-1 pmid: 31352109
[13] Kiani F, Wen CE, Li YC. Prospects and strategies for magnesium alloys as biodegradable implants from cry-stalline to bulk metallic glasses and composites-a review[J]. Acta Biomater, 2020,103:1-23.
doi: 10.1016/j.actbio.2019.12.023
[14] Pacha-Olivenza MA, Galván JC, Porro JA, et al. Efficacy of Laser shock processing of biodegradable Mg and Mg-1Zn alloy on their in vitro corrosion and bacterial response[J]. Surf Coat Technol, 2020,384:125320.
doi: 10.1016/j.surfcoat.2019.125320
[15] Pogorielov M, Husak E, Solodivnik A, et al. Magnesium-based biodegradable alloys: degradation, application, and alloying elements[J]. Interv Med Appl Sci, 2017,9(1):27-38.
[16] Myrissa A, Agha NA, Lu YY, et al. In vitro and in vivo comparison of binary Mg alloys and pure Mg[J]. Mater Sci Eng C Mater Biol Appl, 2016,61:865-874.
doi: 10.1016/j.msec.2015.12.064
[17] Atrens A, Johnston S, Shi ZM, et al. Viewpoint-understanding Mg corrosion in the body for biodegradable medical implants[J]. Scr Mater, 2018,154:92-100.
doi: 10.1016/j.scriptamat.2018.05.021
[18] Riaz U, Rahman ZU, Asgar H, et al. An insight into the effect of buffer layer on the electrochemical performance of MgF2 coated magnesium alloy ZK60[J]. Surf Coat Technol, 2018,344:514-521.
doi: 10.1016/j.surfcoat.2018.03.081
[19] Lu XZ, Lai CP, Chan LC. Novel design of a coral-like open-cell porous degradable magnesium implant for orthopaedic application[J]. Mater Des, 2020,188:108474.
doi: 10.1016/j.matdes.2020.108474
[20] Kuhlmann J, Bartsch I, Willbold E, et al. Fast escape of hydrogen from gas cavities around corroding magnesium implants[J]. Acta Biomater, 2013,9(10):8714-8721.
doi: 10.1016/j.actbio.2012.10.008 pmid: 23069319
[21] Liu XW, Sun JK, Zhou FY, et al. Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application[J]. Mater Des, 2016,94:95-104.
doi: 10.1016/j.matdes.2015.12.128
[22] Prabhu DB, Gopalakrishnan P, Ravi KR. Coatings on implants: study on similarities and differences between the PCL coatings for Mg based lab coupons and final components[J]. Mater Des, 2017,135:397-410.
doi: 10.1016/j.matdes.2017.09.043
[23] Chen CX, Chen JH, Wu W, et al. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy[J]. Biomaterials, 2019,221:119414.
doi: 10.1016/j.biomaterials.2019.119414
[24] Sezer N, Evis Z, Kayhan SM, et al. Review of magnesium-based biomaterials and their applications[J]. J Magnes Alloy, 2018,6(1):23-43.
doi: 10.1016/j.jma.2018.02.003
[25] Agarwal S, Curtin J, Duffy B, et al. Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface mo-difications[J]. Mater Sci Eng C Mater Biol Appl, 2016,68:948-963.
doi: 10.1016/j.msec.2016.06.020
[26] Zhang BP, Hou YL, Wang XD, et al. Mechanical pro-perties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions[J]. Mater Sci Eng: C, 2011,31(8):1667-1673.
doi: 10.1016/j.msec.2011.07.015
[27] Perl DP, Moalem S. Aluminum, Alzheimer’s disease and the geospatial occurrence of similar disorders[J]. Rev Mineral Geochem, 2006,64(1):115-134.
doi: 10.2138/rmg.2006.64.4
[28] Cihova M, Martinelli E, Schmutz P, et al. The role of zinc in the biocorrosion behavior of resorbable Mg-Zn-Ca alloys[J]. Acta Biomater, 2019,100:398-414.
doi: S1742-7061(19)30633-6 pmid: 31539653
[29] Dargusch MS, Balasubramani N, Venezuela J, et al. Improved biodegradable magnesium alloys through advanced solidification processing[J]. Scr Mater, 2020,177:234-240.
doi: 10.1016/j.scriptamat.2019.10.028
[30] Li P, Dai JT, Schweizer E, et al. Response of human periosteal cells to degradation products of zinc and its alloy[J]. Mater Sci Eng C Mater Biol Appl, 2020,108:110208.
doi: 10.1016/j.msec.2019.110208
[31] Yuan W, Li B, Chen DF, et al. Formation mechanism, corrosion behavior, and cytocompatibility of microarc oxidation coating on absorbable high-purity zinc[J]. ACS Biomater Sci Eng, 2019,5(2):487-497.
doi: 10.1021/acsbiomaterials.8b01131 pmid: WOS:000458937900011
[32] Yang HT, Qu XH, Lin WJ, et al. Enhanced osseointegration of Zn-Mg composites by tuning the release of Zn ions with sacrificial Mg-rich anode design[J]. ACS Biomater Sci Eng, 2019,5(2):453-467.
doi: 10.1021/acsbiomaterials.8b01137
[33] Wu GS, Ibrahim JM, Chu PK. Surface design of biodegradable magnesium alloys: a review[J]. Surf Coat Technol, 2013,233:2-12.
doi: 10.1016/j.surfcoat.2012.10.009
[34] Mukhametkaliyev TM, Surmeneva MA, Vladescu A, et al. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance[J]. Mater Sci Eng C Mater Biol Appl, 2017,75:95-103.
doi: S0928-4931(16)31473-4 pmid: 28415551
[35] Cao NQ, Le HM, Pham KM, et al. In vitro corrosion and cell response of hydroxyapatite coated Mg matrix in situ composites for biodegradable material applications[J]. Materials (Basel), 2019,12(21):E3474.
[36] Ma LY, Niu J. In vitro biocorrosion and biocompatibility of AZ31 modified with magnesium phosphate coating by chemical deposition[J]. Surfaces Interfaces, 2019,14:208-214.
doi: 10.1016/j.surfin.2018.12.006
[37] Tian QM, Lin JJ, Rivera-Castaneda L, et al. Nano-to-submicron hydroxyapatite coatings for magnesium-based bioresorbable implants-deposition, characterization, degradation, mechanical properties, and cytocompatibility[J]. Sci Rep, 2019,9:810.
doi: 10.1038/s41598-018-37123-3
[38] Webster TJ, Ergun C, Doremus RH, et al. Enhanced functions of osteoblasts on nanophase ceramics[J]. Biomaterials, 2000,21(17):1803-1810.
pmid: 10905463
[39] Narayana PS, Srihari PV. Biofilm resistant surfaces and coatings on implants: a review[J]. Mater Today: Proc, 2019,18:4847-4853.
[40] Webster TJ, Ergun C, Doremus RH, et al. Increased osteoblast adhesion on titanium-coated hydroxylapatite that forms CaTiO3[J]. J Biomed Mater Res A, 2003,67(3):975-980.
pmid: 14613247
[41] Hacking SA, Tanzer M, Harvey EJ, et al. Relative contributions of chemistry and topography to the osseointegration of hydroxyapatite coatings[J]. Clin Orthop Relat Res, 2002(405):24-38.
[42] Liddell RS, Liu ZM, Mendes VC, et al. Relative contributions of implant hydrophilicity and nanotopography to implant anchorage in bone at early time points[J]. Clin Oral Implants Res, 2020,31(1):49-63.
doi: 10.1111/clr.13546 pmid: 31566254
[43] Saberi A, Bakhsheshi-Rad HR, Karamian E, et al. Magnesium-graphene nano-platelet composites: corrosion behavior, mechanical and biological properties[J]. J Alloy Compd, 2020,821:153379.
doi: 10.1016/j.jallcom.2019.153379
[44] Riaz U, Shabib I, Haider W. The current trends of Mg alloys in biomedical applications‒a review[J]. J Biomed Mater Res Part B Appl Biomater, 2019,107(6):1970-1996.
doi: 10.1002/jbm.b.v107.6
[45] Witte F. The history of biodegradable magnesium implants: a review[J]. Acta Biomater, 2010,6(5):1680-1692.
doi: 10.1016/j.actbio.2010.02.028
[46] Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005,26(17):3557-3563.
pmid: 15621246
[47] Waizy H, Diekmann J, Weizbauer A, et al. In vivo study of a biodegradable orthopedic screw (MgYR-EZr-alloy) in a rabbit model for up to 12 months[J]. J Biomater Appl, 2014,28(5):667-675.
doi: 10.1177/0885328212472215
[48] Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomed Eng Online, 2013,12:62.
doi: 10.1186/1475-925X-12-62 pmid: 23819489
[49] Ambard AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties[J]. J Prosthodont, 2006,15(5):321-328.
doi: 10.1111/jopr.2006.15.issue-5
[50] Sugawara A, Fujikawa K, Kusama K, et al. Histopathologic reaction of a calcium phosphate cement for alveolar ridge augmentation[J]. J Biomed Mater Res, 2002,61(1):47-52.
doi: 10.1002/(ISSN)1097-4636
[51] Fujikawa K, Sugawara A, Kusama K, et al. Fluorescent labeling analysis and electron probe microanalysis for alveolar ridge augmentation using calcium phosphate cement[J]. Dent Mater J, 2002,21(4):296-305.
pmid: 12608419
[52] Comuzzi L, Ooms E, Jansen JA. Injectable calcium phosphate cement as a filler for bone defects around oral implants: an experimental study in goats[J]. Clin Oral Implants Res, 2002,13(3):304-311.
doi: 10.1034/j.1600-0501.2002.130311.x
[53] Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial[J]. Lancet, 2007,369(9576):1869-1875.
doi: 10.1016/S0140-6736(07)60853-8
[54] Wang J, Giridharan V, Shanov V, et al. Flow-induced corrosion behavior of absorbable magnesium-based stents[J]. Acta Biomater, 2014,10(12):5213-5223.
doi: 10.1016/j.actbio.2014.08.034
[1] 吴嘉馨,程兴群,吴红崑. 透明质酸在修复龈乳头退缩中的临床应用进展[J]. 国际口腔医学杂志, 2023, 50(3): 347-352.
[2] 刘琳,周婕妤,吴亚菲,赵蕾. 益生菌生态调节在牙周病防治中的应用[J]. 国际口腔医学杂志, 2020, 47(2): 131-137.
[3] 胡竹林,赵诣,李茵. 口腔龈沟液生物标志物的检测分析现状及临床应用前景展望[J]. 国际口腔医学杂志, 2019, 46(3): 308-315.
[4] 丁杰, 宋光泰. 微创技术在儿童龋病治疗中的应用[J]. 国际口腔医学杂志, 2018, 45(4): 473-479.
[5] 佘杨杨, 农晓琳. A型肉毒杆菌毒素在口腔颌面部的临床应用[J]. 国际口腔医学杂志, 2017, 44(6): 707-711.
[6] 吴幸晨 朱亚琴. 自调节根管锉的特性和临床应用评价[J]. 国际口腔医学杂志, 2013, 40(6): 764-768.
[7] 于婷婷 宋光保. T-Scan系统的特点及其临床应用[J]. 国际口腔医学杂志, 2013, 40(1): 113-116.
[8] 边翔1综述李志韧2 杨永进2 沈焕2审校. Bolton 指数指导正畸的临床应用[J]. 国际口腔医学杂志, 2012, 39(5): 646-648.
[9] 陈兵. 太极扣附着体义齿的临床应用[J]. 国际口腔医学杂志, 2010, 37(3): 265-265~267.
[10] 顾敏综述 顾卫平审校. 排龈术的临床应用[J]. 国际口腔医学杂志, 2010, 37(3): 344-344~347.
[11] 程世兵, 谢蟪旭综述 李龙江审校. 肿瘤热化疗临床应用的研究进展[J]. 国际口腔医学杂志, 2010, 37(3): 337-337~340.
[12] 王晓荣, 陈江浩, 牛亦睿. 自攻型微螺钉种植体支抗的临床应用研究[J]. 国际口腔医学杂志, 2009, 36(5): 537-539,543.
[13] 张映娟综述 陈文霞审校. 牙髓干细胞的可塑性研究[J]. 国际口腔医学杂志, 2009, 36(5): 554-556.
[14] 冯耀浦综述 周洪审校. Forsus Spring 矫治器临床应用的研究进展[J]. 国际口腔医学杂志, 2009, 36(4): 499-501.
[15] 喇娜,罗云. 瓷贴面生物力学研究及临床应用[J]. 国际口腔医学杂志, 2008, 35(S1): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .