国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (1): 71-76.doi: 10.7518/gjkq.2021014

• 综述 • 上一篇    下一篇

牙颌面肌肉发育和再生特征的研究进展

程旭,黄艺璇,李精韬,石冰()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院唇腭裂外科 成都 610041
  • 收稿日期:2020-05-16 修回日期:2020-09-01 出版日期:2021-01-01 发布日期:2021-01-20
  • 通讯作者: 石冰
  • 作者简介:程旭,助理研究员,博士,Email:chengxk10727002@163.com
  • 基金资助:
    国家自然科学基金(81974147);国家自然科学基金(82001031)

Research progress on orofacial muscle development and regeneration

Cheng Xu,Huang Yixuan,Li Jingtao,Shi Bing()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-05-16 Revised:2020-09-01 Online:2021-01-01 Published:2021-01-20
  • Contact: Bing Shi
  • Supported by:
    This study is supported by National Natural Science Foundation of China(81974147);This study is supported by National Natural Science Foundation of China(82001031)

摘要:

牙颌面肌肉发育不足是牙颌面发育畸形的常见特征之一,然而目前临床尚缺乏有效的肌肉扩增手段。牙颌面肌肉是骨骼肌进化的新形态,它的胚胎发育模式和再生潜能等均与四肢躯干肌肉等传统意义上的骨骼肌在上述方面存在差异。本文围绕近年来牙颌面肌肉的胚胎发育来源、成肌调控机制、特征性再生表现等进行综述,旨在为临床探索牙颌面肌肉再生的方法和开拓牙颌面发育畸形新的整复思路提供参考。

关键词: 牙颌面肌肉, 骨骼肌再生, 胚胎发育, 肌源性调控因子, 成纤维脂肪前体细胞

Abstract:

Orofacial muscle deficiency remains a common feature of congenital orofacial deformities. However, muscle augmentation strategies that address this defect are still lacking. Orofacial muscles emerge as an evolutionary novelty in the transition from passive filter feeding to an active predatory lifestyle. Consequently, a certain amount of discrepancy exists in the developmental trajectory and regeneration potential between orofacial muscles and limb and truck muscles, which are the stereotype of skeletal muscle studies. A comprehensive review of the embryonic origin, myogenic regulatory mechanism and regeneration capacity of orofacial muscle is provided in this paper to open new avenues in treating congenital orofacial deformities by improving orofacial muscle regeneration.

Key words: orofacial muscle, skeletal muscle regeneration, embryonic development, myogenic regulatory factors, fibroadipogenic progenitors

[1] Dai L, Zhu J, Mao M , et al. Time trends in oral clefts in Chinese newborns: data from the Chinese national birth defects monitoring network[J]. Birth Defects Res Part A Clin Mol Teratol, 2010,88(1):41-47.
[2] Li Q, Zhou X, Wang Y , et al. Facial paralysis in patients with hemifacial microsomia: frequency, distribution, and association with other OMENS abnormalities[J]. J Craniofac Surg, 2018,29(6):1633-1637.
doi: 10.1097/SCS.0000000000004618 pmid: 29771843
[3] Sinclair N, Gharb BB, Papay F , et al. Soft tissue reconstruction in patients with hemifacial microsomia[J]. J Craniofac Surg, 2019,30(3):879-887.
doi: 10.1097/SCS.0000000000005320 pmid: 30817535
[4] Stoick-Cooper CL, Moon RT, Weidinger G . Advan-ces in signaling in vertebrate regeneration as a prelude to regenerative medicine[J]. Genes Dev, 2007,21(11):1292-1315.
[5] Schubert FR, Singh AJ, Afoyalan O , et al. To roll the eyes and snap a bite-function, development and evolution of craniofacial muscles[J]. Semin Cell Dev Biol, 2019,91:31-44.
[6] Sambasivan R, Kuratani S, Tajbakhsh S . An eye on the head: the development and evolution of craniofacial muscles[J]. Development, 2011,138(12):2401-2415.
[7] Noden DM, Francis-West P . The differentiation and morphogenesis of craniofacial muscles[J]. Dev Dyn, 2006,235(5):1194-1218.
[8] Kelly RG . Core issues in craniofacial myogenesis[J]. Exp Cell Res, 2010,316(18):3034-3041.
pmid: 20457151
[9] Tzahor E . Head muscle development[J]. Results Pro-bl Cell Differ, 2015,56:123-142.
[10] Harel I, Nathan E, Tirosh-Finkel L , et al. Distinct origins and genetic programs of head muscle satellite cells[J]. Dev Cell, 2009,16(6):822-832.
[11] Czajkowski MT, Rassek C, Lenhard DC , et al. Divergent and conserved roles of Dll1 signaling in development of craniofacial and trunk muscle[J]. Dev Biol, 2014,395(2):307-316.
doi: 10.1016/j.ydbio.2014.09.005 pmid: 25220152
[12] Diogo R, Kelly RG, Christiaen L , et al. A new heart for a new head in vertebrate cardiopharyngeal evolution[J]. Nature, 2015,520(7548):466-473.
doi: 10.1038/nature14435 pmid: 25903628
[13] Tzahor E, Evans SM . Pharyngeal mesoderm develo-pment during embryogenesis: implications for both heart and head myogenesis[J]. Cardiovasc Res, 2011,91(2):196-202.
doi: 10.1093/cvr/cvr116 pmid: 21498416
[14] Harel I, Maezawa Y, Avraham R , et al. Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis[J]. Proc Natl Acad Sci USA, 2012,109(46):18839-18844.
doi: 10.1073/pnas.1208690109 pmid: 23112163
[15] McDonald-McGinn DM, Sullivan KE, Marino B , et al. 22q11.2 deletion syndrome[J]. Nat Rev Dis Pri-mers, 2015,1:15071.
[16] Baldini A . Dissecting contiguous gene defects: TB-X1[J]. Curr Opin Genet Dev, 2005,15(3):279-284.
[17] Vyas B, Nandkishore N, Sambasivan R . Vertebrate cranial mesoderm: developmental trajectory and evo-lutionary origin[J]. Cell Mol Life Sci, 2020,77(10):1933-1945.
doi: 10.1007/s00018-019-03373-1 pmid: 31722070
[18] Sefton EM, Kardon G . Connecting muscle development, birth defects, and evolution: an essential role for muscle connective tissue[J]. Curr Top Dev Biol, 2019,132:137-176.
[19] Bentzinger CF, Wang YX, Rudnicki MA . Building muscle: molecular regulation of myogenesis[J]. Co-ld Spring Harb Perspect Biol, 2012,4(2):a008342.
[20] Tajbakhsh S, Rocancourt D, Cossu G , et al. Redefi-ning the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD[J]. Cell, 1997,89(1):127-138.
doi: 10.1016/s0092-8674(00)80189-0 pmid: 9094721
[21] Kassar-Duchossoy L, Gayraud-Morel B, Gomès D , et al. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice[J]. Nature, 2004,431(7007):466-471.
[22] Lu J . Control of facial muscle development by MyoR and capsulin[J]. Science, 2002,298(5602):2378-2381.
[23] Lu J, Webb R, Richardson JA , et al. MyoR: a muscle-restricted basic Helix-loop-Helix transcription fa-ctor that antagonizes the actions of MyoD[J]. Proc Natl Acad Sci USA, 1999,96(2):552-557.
doi: 10.1073/pnas.96.2.552 pmid: 9892671
[24] Grifone R, Kelly RG . Heartening news for head mu-scle development[J]. Trends Genet, 2007,23(8):365-369.
doi: 10.1016/j.tig.2007.05.002 pmid: 17524520
[25] Abu-Issa R, Kirby ML . Heart field: from mesoderm to heart tube[J]. Annu Rev Cell Dev Biol, 2007,23:45-68.
doi: 10.1146/annurev.cellbio.23.090506.123331 pmid: 17456019
[26] Tzahor E . Heart and craniofacial muscle develop-ment: a new developmental theme of distinct myogenic fields[J]. Dev Biol, 2009,327(2):273-279.
doi: 10.1016/j.ydbio.2008.12.035 pmid: 19162003
[27] Feige P, Brun CE, Ritso M , et al. Orienting muscle stem cells for regeneration in homeostasis, aging, and disease[J]. Cell Stem Cell, 2018,23(5):653-664.
[28] Wosczyna MN, Rando TA . A muscle stem cell support group: coordinated cellular responses in muscle regeneration[J]. Dev Cell, 2018,46(2):135-143.
[29] Schiaffino S, Reggiani C . Fiber types in mammalian skeletal muscles[J]. Physiol Rev, 2011,91(4):1447-1531.
doi: 10.1152/physrev.00031.2010 pmid: 22013216
[30] Stuelsatz P, Shearer A, Li YF , et al. Extraocular muscle satellite cells are high performance myo-engines retaining efficient regenerative capacity in dystrophin deficiency[J]. Dev Biol, 2015,397(1):31-44.
doi: 10.1016/j.ydbio.2014.08.035 pmid: 25236433
[31] Rosero Salazar DH, Carvajal Monroy PL, Wagener FADTG , et al. Orofacial muscles: embryonic develo-pment and regeneration after injury[J]. J Dent Res, 2020,99(2):125-132.
doi: 10.1177/0022034519883673 pmid: 31675262
[32] Pavlath GK, Thaloor D, Rando TA , et al. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities[J]. Dev Dyn, 1998,212(4):495-508.
doi: 10.1002/(SICI)1097-0177(199808)212:4<495::AID-AJA3>3.0.CO;2-C pmid: 9707323
[33] Ono Y, Boldrin L, Knopp P , et al. Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles[J]. Dev Biol, 2010,337(1):29-41.
doi: 10.1016/j.ydbio.2009.10.005 pmid: 19835858
[34] Randolph ME, Phillips BL, Choo HJ , et al. Pharyngeal satellite cells undergo myogenesis under basal conditions and are required for pharyngeal muscle maintenance[J]. Stem Cells, 2015,33(12):3581-3595.
pmid: 26178867
[35] Carvajal Monroy PL, Grefte S, Kuijpers-Jagtman AM , et al. A rat model for muscle regeneration in the soft palate[J]. PLoS One, 2013,8(3):e59193.
doi: 10.1371/journal.pone.0059193 pmid: 23554995
[36] Cheng X, Huang HY, Luo XY , et al. Wnt7a induces satellite cell expansion, myofiber hyperplasia and hypertrophy in rat craniofacial muscle[J]. Sci Rep, 2018,8(1):10613.
doi: 10.1038/s41598-018-28917-6 pmid: 30006540
[37] Wosczyna MN, Konishi CT, Perez Carbajal EE , et al. Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscle[J]. Cell Rep, 2019, 27(7): 2029-2035. e5.
doi: 10.1016/j.celrep.2019.04.074 pmid: 31091443
[38] Lemos DR, Paylor B, Chang C , et al. Functionally convergent white adipogenic progenitors of diffe-rent lineages participate in a diffused system suppor-ting tissue regeneration[J]. Stem Cells, 2012,30(6):1152-1162.
doi: 10.1002/stem.1082 pmid: 22415977
[39] Scott RW, Arostegui M, Schweitzer R , et al. Hic1 defines quiescent mesenchymal progenitor subpopulations with distinct functions and fates in skeletal muscle regeneration[J]. Cell Stem Cell, 2019, 25(6): 797-813.e9.
doi: 10.1016/j.stem.2019.11.004 pmid: 31809738
[40] Malecova B, Gatto S, Etxaniz U , et al. Dynamics of cellular states of fibro-adipogenic progenitors du-ring myogenesis and muscular dystrophy[J]. Nat Com-mun, 2018,9:3670.
[41] Biferali B, Proietti D, Mozzetta C , et al. Fibro-adipogenic progenitors cross-talk in skeletal muscle: the social network[J]. Front Physiol, 2019,10:1074.
doi: 10.3389/fphys.2019.01074 pmid: 31496956
[42] Madaro L, Passafaro M, Sala D , et al. Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis[J]. Nat Cell Biol, 2018,20(8):917-927.
doi: 10.1038/s41556-018-0151-y pmid: 30050118
[43] Formicola L, Pannérec A, Correra RM , et al. Inhibition of the activin receptor type-2B pathway resto-res regenerative capacity in satellite cell-depleted ske-letal muscle[J]. Front Physiol, 2018,9:515.
doi: 10.3389/fphys.2018.00515 pmid: 29881353
[44] Lukjanenko L, Karaz S, Stuelsatz P , et al. Aging disrupts muscle stem cell function by impairing matricellular WISP1 secretion from fibro-adipogenic progenitors[J]. Cell Stem Cell, 2019, 24(3): 433.e7-446.e7.
[1] 王淳艺,李精韬. 罕见下颌骨及下唇复制畸形1例及相关文献回顾[J]. 国际口腔医学杂志, 2023, 50(4): 452-456.
[2] 胡逢春综述 陶谦审校. 上皮—间充质转化的生物学作用[J]. 国际口腔医学杂志, 2011, 38(2): 207-209.
[3] 刘来奎,李晓箐,易新竹,. 下颌骨发生的研究进展[J]. 国际口腔医学杂志, 2006, 33(02): 107-109.
[4] 王艳民,易新竹. 颞下颌关节的胚胎发育[J]. 国际口腔医学杂志, 2004, 31(04): 285-286.
[5] 轩东英,张建波 金岩. 胚胎发育期TGF-β超家族成员与腭裂发生的关系[J]. 国际口腔医学杂志, 2004, 31(02): 132-134.
[6] 刘来奎 易新竹. Ihh信号在胚胎发育期软骨内成骨中的调控机制[J]. 国际口腔医学杂志, 2003, 30(06): 450-452.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .