国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (6): 675-679.doi: 10.7518/gjkq.2019097

• 综述 • 上一篇    下一篇

牙髓干细胞成骨微环境的研究进展

周婷茹1,2,李永生2()   

  1. 1. 昆明医科大学口腔医学院 昆明 650032
    2. 云南省第一人民医院口腔颌面外科 昆明 650032
  • 收稿日期:2019-02-10 修回日期:2019-08-19 出版日期:2019-11-01 发布日期:2019-11-14
  • 通讯作者: 李永生
  • 作者简介:周婷茹,硕士,Email: 117982359@qq.com
  • 基金资助:
    云南省科学技术厅-昆明医科大学应用基础研究联合专项(2017FE467-209)

Advances of dental pulp stem cells in osteogenic microenvironment

Zhou Tingru1,2,Li Yongsheng2()   

  1. 1. School of Stomatology, Kunming Medical University, Kunming 650032, China
    2. Dept. of Oral and Maxillofacial Surgery, Yunnan First People’s Hospital, Kunming 650032, China;
  • Received:2019-02-10 Revised:2019-08-19 Online:2019-11-01 Published:2019-11-14
  • Contact: Yongsheng Li
  • Supported by:
    This study was supported by Yunnan Provincial Department of Science and Technology-Kunming Medical University Joint Research Fundamental Research Project(2017FE467-209)

摘要:

牙髓干细胞具有高度增殖及多谱系分化的潜能,使其在联合生物支架材料修复口腔颌面部骨组织缺损方面具有独特的优势和前景,是骨组织工程学中关键的优选细胞。为了更好地实现骨组织的再生,需要为牙髓干细胞的成骨分化提供一个适宜的微环境。本文对牙髓干细胞成骨分化微环境中的细胞因子、支架材料及药物的研究进展进行综述。

关键词: 牙髓干细胞, 成骨分化, 细胞因子, 支架材料, 药物

Abstract:

Dental pulp stem cells possess high proliferation rates and multi-lineage differentiation potential. These features provide them with unique advantages and prospects in the repair of oral and maxillofacial bone tissue with bio-scaffold materials. Hence, dental pulp stem cells are optimised cells in bone tissue engineering. To enhance the regeneration of bone tissue, a suitable microenvironment is necessary for the osteogenic differentiation of dental pulp stem cells. In this review, we will examine the research progress of cytokines, scaffolds and drugs of dental pulp stem cells in an osteogenic microenvironment.

Key words: dental pulp stem cell, osteogenic differentiation, cytokine, scaffold, drug

中图分类号: 

  • Q254
[1] Ward BB, Brown SE, Krebsbach PH . Bioengineering strategies for regeneration of craniofacial bone: a review of emerging technologies[J]. Oral Dis, 2010,16(8):709-716.
[2] Yang M, Zhang H, Gangolli R . Advances of mesen-chymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering[J]. Curr Stem Cell Res Ther, 2014,9(3):150-161.
[3] Hossein-Khannazer N, Hashemi SM, Namaki S , et al. Study of the immunomodulatory effects of osteogenic differentiated human dental pulp stem cells[J]. Life Sci, 2019,216:111-118.
[4] Gronthos S, Mankani M, Brahim J , et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Natl Acad Sci USA, 2000,97(25):13625-13630.
[5] Bousnaki M, Bakopoulou A, Papadogianni D , et al. Fibro/chondrogenic differentiation of dental stem cells into chitosan/alginate scaffolds towards tem-poromandibular joint disc regeneration[J]. J Mater Sci Mater Med, 2018,29(7):97.
[6] Han YJ, Kang YH, Shivakumar SB , et al. Stem cells from cryopreserved human dental pulp tissues se-quentially differentiate into definitive endoderm and hepatocyte-like cells in vitro[J]. Int J Med Sci, 2017,14(13):1418-1429.
[7] Suchanek J, Nasry SA, Soukup T . The differentiation potential of human natal dental pulp stem cells into insulin-producing cells[J]. Folia Biol (Praha), 2017,63(4):132-138.
[8] 袁梦桐, 胡伟平, 周海燕 , 等. 体外克隆化传代培养人年轻恒牙牙髓干细胞的研究[J]. 口腔医学研究, 2010,26(5):624-627.
Yuan MT, Hu WP, Zhou HY , et al. Observation of dental pulp stem cells from human young permanent teeth of cloning subculture in vitro[J]. J Oral Sci Res, 2010,26(5):624-627.
[9] Lu X, Liu SF, Wang HH , et al. A biological study of supernumerary teeth derived dental pulp stem cells based on RNA-seq analysis[J]. Int Endod J, 2019,52(6):819-828.
[10] Tang R, Ding G . Swine dental pulp stem cells inhibit T-cell proliferation[J]. Transplant Proc, 2011,43(10):3955-3959.
[11] Kasagi S, Chen W . TGF-beta1 on osteoimmunology and the bone component cells[J]. Cell Biosci, 2013,3(1):4.
[12] Yoon SJ, Yoo Y, Nam SE , et al. The cocktail effect of BMP-2 and TGF-β1 loaded in visible light-cured glycol chitosan hydrogels for the enhancement of bone formation in a rat tibial defect model[J]. Mar Drugs, 2018,16(10). doi: 10.3390/md16100351.
[13] 杨毅 . TGF-β2对兔骨髓间充质干细胞体外成骨分化干预的实验研究[D]. 昆明: 昆明医科大学, 2014.
Yang Y . Intervention of TGF-β2 on osteogenic dif-ferentiation of rabbit bone marrow mesenchymal stem cells in vitro[D]. Kunming: Kunming Medical University, 2014.
[14] Huojia M, Muraoka N, Yoshizaki K , et al. TGF-β3 induces ectopic mineralization in fetal mouse dental pulp during tooth germ development[J]. Dev Growth Differ, 2005,47(3):141-152.
[15] Yi L, Li Z, Jiang H , et al. Gene modification of transforming growth factor β (TGF-β) and interleukin 10 (IL-10) in suppressing Mt sonicate induced os-teoclast formation and bone absorption[J]. Med Sci Monit, 2018,24:5200-5207.
[16] Aksel H, Huang GT . Combined effects of vascular endothelial growth factor and bone morphogenetic protein 2 on odonto/osteogenic differentiation of human dental pulp stem cells in vitro[J]. J Endod, 2017,43(6):930-935.
[17] Taşlı PN, Aydın S, Yalvaç ME , et al. Bmp 2 and Bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells[J]. Appl Biochem Biotechnol, 2014,172(6):3016-3025.
[18] Huang H, Dou L, Song J , et al. CBFA2T2 is required for BMP-2-induced osteogenic differentiation of mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2018,496(4):1095-1101.
[19] Tsukamoto J, Naruse K, Nagai Y , et al. Efficacy of a self-assembling peptide hydrogel, SPG-178-Gel, for bone regeneration and three-dimensional osteogenic induction of dental pulp stem cells[J]. Tissue Eng Part A, 2017,23(23/24):1394-1402.
[20] Lamplot JD, Qin J, Nan G , et al. BMP9 signaling in stem cell differentiation and osteogenesis[J]. Am J Stem Cells, 2013,2(1):1-21.
[21] Lee JS, Lee JM, Im GI . Electroporation-mediated transfer of Runx2 and Osterix genes to enhance os-teogenesis of adipose stem cells[J]. Biomaterials, 2011,32(3):760-768.
[22] Feng G, Zhang J, Feng X , et al. Runx2 modified dental pulp stem cells (DPSCs) enhance new bone formation during rapid distraction osteogenesis (DO)[J]. Differentiation, 2016,92(4):195-203.
[23] Zhan FL, Liu XY, Wang XB . The role of microRNA-143-5p in the differentiation of dental pulp stem cells into odontoblasts by targeting Runx2 via the OPG/RANKL signaling pathway[J]. J Cell Biochem, 2018,119(1):536-546.
[24] Geoffroy V, Kneissel M, Fournier B , et al. High bone resorption in adult aging transgenic mice overexpre-ssing cbfa1/runx2 in cells of the osteoblastic lineage[J]. Mol Cell Biol, 2002,22(17):6222-6233.
[25] Liu W, Toyosawa S, Furuichi T , et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures[J]. J Cell Biol, 2001,155(1):157-166.
[26] Goto N, Fujimoto K, Fujii S , et al. Role of MSX1 in osteogenic differentiation of human dental pulp stem cells[J]. Stem Cells Int, 2016,2016:8035759.
[27] Xin T, Zhang T, Li Q , et al. A novel mutation of MSX1 in oligodontia inhibits odontogenesis of dental pulp stem cells via the ERK pathway[J]. Stem Cell Res Ther, 2018,9(1):221.
[28] Riccio M, Resca E, Maraldi T , et al. Human dental pulp stem cells produce mineralized matrix in 2D and 3D cultures[J]. Eur J Histochem, 2010,54(4):e46.
[29] Kanafi MM, Ramesh A, Gupta PK , et al. Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering[J]. Int Endod J, 2014,47(7):687-697.
[30] Xia Y, Chen H, Zhang F , et al. Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells[J]. Artif Cells Nanomed Biotechnol, 2018,46(Sup1):423-433.
[31] Guo T, Li Y, Cao G , et al. Fluorapatite-modified scaffold on dental pulp stem cell mineralization[J]. J Dent Res, 2014,93(12):1290-1295.
[32] 于玲, 刘阳, 张媛媛 , 等. 体外观察三种支架材料对人乳牙牙髓干细胞生物学行为的影响[J]. 实用口腔医学杂志, 2016,32(2):235-238.
Yu L, Liu Y, Zhang YY , et al. Influence of three ty-pes of scaffolds on biological behavior of stem cells from human exfoliated deciduous teeth[J]. J Pract Stomatol, 2016,32(2):235-238.
[33] Yuan M, Zhan Y, Hu W , et al. Aspirin promotes osteogenic differentiation of human dental pulp stem cells[J]. Int J Mol Med, 2018,42(4):1967-1976.
[34] Ruan F, Zheng Q, Wang J . Mechanisms of bone ana-bolism regulated by statins[J]. Biosci Rep, 2012,32(6):511-519.
[35] Wang Y, Zheng Y, Wang Z , et al. 10 -7 M 17β-oestradiol enhances odonto/osteogenic potency of human den-tal pulp stem cells by activation of the NF-κB pathway [J]. Cell Prolif, 2013,46(6):677-684.
[1] 常欣楠,刘磊. 生物可降解镁基材料在颅颌面外科的应用及其研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 107-115.
[2] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[3] 于乐蓉,李祥伟,艾虹. 牙髓干细胞干性维持的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 463-471.
[4] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[5] 成益凡,秦旭,姜鸣,朱光勋. 牙周病中固有淋巴细胞的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 32-36.
[6] 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592.
[7] 戢晓,朱桂全. 维生素D与药物相关性颌骨坏死关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 441-447.
[8] 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488.
[9] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[10] 付恒怡,汪成林. 人牙髓干细胞无血清培养方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 220-226.
[11] 梁屹,裴锡波,万乾炳. 光响应水凝胶在生物医学领域应用的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 12-18.
[12] 周易,赵玉鸣. 牙髓再生支架材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 19-26.
[13] 熊梦琳,吴龙,马丽,赵今. 转化生长因子-β2促进牙髓干细胞增殖和分化的作用研究[J]. 国际口腔医学杂志, 2021, 48(6): 635-639.
[14] 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744.
[15] 刘娟,陈斌,闫福华. 富血小板血浆和浓缩生长因子对人牙周膜细胞增殖和成骨分化影响的研究[J]. 国际口腔医学杂志, 2021, 48(5): 520-527.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .