国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (6): 663-669.doi: 10.7518/gjkq.2019081

• 综述 • 上一篇    下一篇

白假丝酵母与口腔常见细菌相互作用的进展研究

胡垚,程磊,郭强,任彪()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院牙体牙髓病科 成都 610041
  • 收稿日期:2019-02-20 修回日期:2019-07-06 出版日期:2019-11-01 发布日期:2019-11-14
  • 通讯作者: 任彪
  • 作者简介:胡垚,硕士,Email: 412456830@qq.com
  • 基金资助:
    国家自然科学基金(81870778)

Research progress on cross-kingdom interactions between Candida albicans and common oral bacteria

Hu Yao,Cheng Lei,Guo Qiang,Ren Biao()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2019-02-20 Revised:2019-07-06 Online:2019-11-01 Published:2019-11-14
  • Contact: Biao Ren
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81870778)

摘要:

白假丝酵母是人体正常的共生菌群,在健康成人口腔中,白假丝酵母的检出率为30%~50%。同时白假丝酵母也是一种机会致病菌,常可造成人体皮肤、黏膜、血液系统等部位的感染。在其感染过程中,常伴有与不同细菌的混合感染。在口腔中,白假丝酵母可与多种细菌一起参与龋病、义齿性口炎、黏膜感染等疾病的发生与发展。本文对白假丝酵母与口腔常见细菌的相互作用以及其可能机制进行综述,以为临床对口腔常见疾病的诊断、预防、治疗等提供新思路。

关键词: 白假丝酵母, 口腔疾病, 相互作用

Abstract:

Candida albicans is one of the most prevalent commensal species of human microbiota, which can be detected in the oral cavity of 30%-50% healthy adults. However, it is also an opportunistic pathogen that can cause severe skin, mucosal or bloodstream infections. The impact of C. albicans typically depends on its interaction with bacteria. For example, together with other bacteria, C. albicans can participate in the development of caries, denture stomatitis and mucosal infections. Therefore, in this review, the interactions between C. albicans and common oral bacteria and the possible mechanisms are summarised, thereby providing novel ideas on the clinical prevention and treatment of common oral diseases.

Key words: Candida albicans, oral diseases, cross-kingdom interaction

中图分类号: 

  • R37
[1] Simón-Soro A, Tomás I, Cabrera-Rubio R , et al. Microbial geography of the oral cavity[J]. J Dent Res, 2013,92(7):616-621.
[2] Dupuy AK, David MS, Li L , et al. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal[J]. PLoS One, 2014,9(3):e90899.
[3] Krom BP, Kidwai S, Ten Cate JM . Candida and other fungal species: forgotten players of healthy oral microbiota[J]. J Dent Res, 2014,93(5):445-451.
[4] Wolcott R, Costerton JW, Raoult D , et al. The poly-microbial nature of biofilm infection[J]. Clin Micro-biol Infect, 2013,19(2):107-112.
[5] Nobile CJ, Johnson AD . Candida albicans biofilms and human disease[J]. Annu Rev Microbiol, 2015,69:71-92.
[6] Xu H, Jenkinson HF, Dongari-Bagtzoglou A . Innocent until proven guilty: mechanisms and roles of Stre-ptococcus-Candida interactions in oral health and disease[J]. Mol Oral Microbiol, 2014,29(3):99-116.
[7] Xiao J, Moon Y, Li L , et al. Candida albicans carriage in children with severe early childhood caries (S- ECC) and maternal relatedness[J]. PLoS One, 2016,11(10):e0164242.
[8] Harriott MM, Noverr MC . Importance of Candida-bacterial polymicrobial biofilms in disease[J]. Trends Microbiol, 2011,19(11):557-563.
[9] Falsetta ML, Klein MI, Colonne PM , et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo[J]. Infect Immun, 2014,82(5):1968-1981.
[10] Peters BM, Ovchinnikova ES, Krom BP , et al. Sta-phylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p[J]. Microbiology, 2012,158(Pt 12):2975-2986.
[11] Bowen WH, Koo H . Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms[J]. Caries Res, 2011,45(1):69-86.
[12] Dutton LC, Nobbs AH, Jepson K , et al. O-manno-sylation in Candida albicans enables development of interkingdom biofilm communities[J]. MBio, 2014,5(2):e00911.
[13] Gregoire S, Xiao J, Silva BB , et al. Role of glucosyl-transferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces[J]. Appl Environ Microbiol, 2011,77(18):6357-6367.
[14] Hwang G, Liu Y, Kim D , et al. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo[J]. PLoS Pathog, 2017,13(6):e1006407.
[15] Hwang G, Marsh G, Gao L , et al. Binding force dynamics of Streptococcus mutans-glucosyltrans-ferase B to Candida albicans[J]. J Dent Res, 2015,94(9):1310-1317.
[16] Matsui R, Cvitkovitch D . Acid tolerance mechanisms utilized by Streptococcus mutans[J]. Future Microbiol, 2010,5(3):403-417.
[17] Willems HM, Kos K, Jabra-Rizk MA , et al. Candida albicans in oral biofilms could prevent caries[J]. Pathog Dis, 2016,74(5). doi: 10.1093/femspd/ftw039.
[18] Řičicová M, Kucharíková S, Tournu H , et al. Candida albicans biofilm formation in a new in vivo rat model[J]. Microbiology, 2010,156(Pt 3):909-919.
[19] Rath H, Feng D, Neuweiler I , et al. Biofilm formation by the oral pioneer colonizer Streptococcus gordonii: an experimental and numerical study[J]. FEMS Mic-robiol Ecol, 2017,93(3). doi: 10.1093/femsec/fix010.
[20] Bamford CV, Nobbs AH, Barbour ME , et al. Func-tional regions of Candida albicans hyphal cell wall protein Als3 that determine interaction with the oral bacterium Streptococcus gordonii[J]. Microbiology, 2015,161(Pt 1):18-29.
[21] Diaz PI, Xie Z, Sobue T , et al. Synergistic interaction between Candida albicans and commensal oral stre-ptococci in a novel in vitro mucosal model[J]. Infect Immun, 2012,80(2):620-632.
[22] Dutton LC, Paszkiewicz KH, Silverman RJ , et al. Transcriptional landscape of trans-kingdom com-munication between Candida albicans and Strepto-coccus gordonii[J]. Mol Oral Microbiol, 2016,31(2):136-161.
[23] Jack AA, Daniels DE, Jepson MA , et al. Strepto-coccus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans [J]. Microbiology, 2015,161(Pt 2):411-421.
[24] Jesionowski AM, Mansfield JM, Brittan JL , et al. Transcriptome analysis of Streptococcus gordonii Challis DL1 indicates a role for the biofilm-asso-ciated fruRBA operon in response to Candida albicans [J]. Mol Oral Microbiol, 2016,31(4):314-328.
[25] Montelongo-Jauregui D, Srinivasan A, Ramasubra-manian AK,et al. An in vitro model for oral mixed biofilms of Candida albicans and Streptococcus gordonii in synthetic saliva[J]. Front Microbiol, 2016,7:686.
[26] Montelongo-Jauregui D, Srinivasan A, Ramasubra-manian AK, et al. An in vitro model for Candida albicans-Streptococcus gordonii biofilms on titanium surfaces[J]. J Fungi (Basel), 2018,4(2). doi: 10.3390/ jof4020066.
[27] Ricker A, Vickerman M, Dongari-Bagtzoglou A . Streptococcus gordonii glucosyltransferase promotes biofilm interactions with Candida albicans[J]. J Oral Microbiol, 2014. doi: 10.3402/jom.v6.23419.
[28] de Carvalho Dias K, Barbugli PA, de Patto F , et al. Soluble factors from biofilm of Candida albicans and Staphylococcus aureus promote cell death and inflammatory response[J]. BMC Microbiol, 2017,17(1):146.
[29] Kean R, Rajendran R, Haggarty J , et al. Candida albicans mycofilms support Staphylococcus aureus colonization and enhances miconazole resistance in Dual-species interactions[J]. Front Microbiol, 2017,8:258.
[30] Krause J, Geginat G, Tammer I . Prostaglandin E2 from Candida albicans stimulates the growth of Staphylococcus aureus in mixed biofilms[J]. PLoS One, 2015,10(8):e0135404.
[31] Li H, Zhang C, Liu P , et al. In vitro interactions be-tween fluconazole and minocycline against mixed cultures of Candida albicans and Staphylococcus aureus[J]. J Microbiol Immunol Infect, 2015,48(6):655-661.
[32] Lindsay AK, Hogan DA . Candida albicans: mole-cular interactions with Pseudomonas aeruginosa and Staphylococcus aureus[J]. Fungal Biol Rev, 2014,28(4):85-96.
[33] Nash EE, Peters BM, Palmer GE , et al. Morpho-genesis is not required for Candida albicans-Staphy-lococcus aureus intra-abdominal infection-mediated dissemination and lethal sepsis[J]. Infect Immun, 2014,82(8):3426-3435.
[34] Nash EE, Peters BM, Fidel PL , et al. Morphology-independent virulence of Candida species during polymicrobial intra-abdominal infections with Sta-phylococcus aureus[J]. Infect Immun, 2015,84(1):90-98.
[35] O’Donnell LE, Millhouse E, Sherry L , et al. Polymi-crobial Candida biofilms: friends and foe in the oral cavity[J]. FEMS Yeast Res, 2015,15(7). doi: 10.1093/ femsyr/fov077.
[36] Beenken KE, Blevins JS, Smeltzer MS . Mutation of sarA in Staphylococcus aureus limits biofilm for-mation[J]. Infect Immun, 2003,71(7):4206-4211.
[37] Harriott MM, Noverr MC . Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance[J]. Antimicrob Agents Chemother, 2009,53(9):3914-3922.
[38] Boyen F, Verstappen KM, De Bock M , et al. In vitro antimicrobial activity of miconazole and polymyxin B against canine meticillin-resistant Staphylococcus aureus and meticillin-resistant Staphylococcus pseu-dintermedius isolates[J]. Vet Dermatol, 2012,23(4):381-385.
[39] Memmi G, Nair DR, Cheung A . Role of ArlRS in autolysis in methicillin-sensitive and methicillin-resistant Staphylococcus aureus strains[J]. J Bacteriol, 2012,194(4):759-767.
[40] Kong EF, Tsui C, Kucharíková S , et al. Commensal protection of Staphylococcus aureus against anti-microbials by Candida albicans biofilm matrix[J]. MBio, 2016,7(5). doi: 10.1128/mBio.01365-16.
[41] Lister JL, Horswill AR . Staphylococcus aureus bio-films: recent developments in biofilm dispersal[J]. Front Cell Infect Microbiol, 2014,4:178.
[42] Nobre LS, Todorovic S, Tavares AF , et al. Binding of azole antibiotics to Staphylococcus aureus flavo-hemoglobin increases intracellular oxidative stress[J]. J Bacteriol, 2010,192(6):1527-1533.
[43] Peters BM, Jabra-Rizk MA, Scheper MA , et al. Mi-crobial interactions and differential protein expression in Staphylococcus aureus-Candida albicans dual-species biofilms[J]. FEMS Immunol Med Microbiol, 2010,59(3):493-503.
[44] Peters BM, Noverr MC . Candida albicans-Staphy-lococcus aureus polymicrobial peritonitis modulates host innate immunity[J]. Infect Immun, 2013,81(6):2178-2189.
[45] Rajendran R, Borghi E, Falleni M , et al. Acetylc-holine protects against Candida albicans infection by inhibiting biofilm formation and promoting hemocyte function in a Galleria mellonella infection model[J]. Eukaryot Cell, 2015,14(8):834-844.
[46] Schlecht LM, Peters BM, Krom BP , et al. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue[J]. Mi-crobiology, 2015,161(Pt 1):168-181.
[47] Weidt S, Haggarty J, Kean R , et al. A novel targeted/untargeted GC-Orbitrap metabolomics methodology applied to Candida albicans and Staphylococcus aureus biofilms[J]. Metabolomics, 2016,12(12):189.
[48] Allonsius CN, van den Broek MFL, De Boeck I , et al. Interplay between Lactobacillus rhamnosus GG and Candida and the involvement of exopolysac-charides[J]. Microb Biotechnol, 2017,10(6):1753-1763.
[49] Jørgensen MR, Kragelund C, Jensen PØ , et al. Pro-biotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro[J]. J Oral Microbiol, 2017,9(1):1274582.
[50] Liang W, Guan G, Dai Y , et al. Lactic acid bacteria differentially regulate filamentation in two heritable cell types of the human fungal pathogen Candida albicans[J]. Mol Microbiol, 2016,102(3):506-519.
[51] Mailänder-Sánchez D, Braunsdorf C, Grumaz C , et al. Antifungal defense of probiotic Lactobacillus rhamnosus GG is mediated by blocking adhesion and nutrient depletion[J]. PLoS One, 2017,12(10):e0184438.
[52] Matsubara VH, Ishikawa KH, Ando-Suguimoto ES , et al. Probiotic bacteria alter pattern-recognition receptor expression and cytokine profile in a human macrophage model challenged with Candida albicans and Lipopolysaccharide[J]. Front Microbiol, 2017,8:2280.
[53] Ribeiro FC, de Barros PP, Rossoni RD , et al. Lacto-bacillus rhamnosus inhibits Candida albicans viru-lence factors in vitro and modulates immune system in Galleria mellonella[J]. J Appl Microbiol, 2017,122(1):201-211.
[54] Rossoni RD, Fuchs BB, de Barros PP, et al. Lacto-bacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida al- bicans infection[J]. PLoS One, 2017,12(3):e0173332.
[55] Song YG, Lee SH . Inhibitory effects of Lactobacillus rhamnosus and Lactobacillus casei on Candida biofilm of denture surface[J]. Arch Oral Biol, 2017,76:1-6.
[56] Han Y, Kim B, Ban J , et al. A randomized trial of Lactobacillus plantarum CJLP133 for the treatment of atopic dermatitis[J]. Pediatr Allergy Immunol, 2012,23(7):667-673.
[57] Köhler GA, Assefa S, Reid G . Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans[J]. Infect Dis Obstet Gynecol, 2012,2012:636474.
[58] Wächtler B, Wilson D, Haedicke K , et al. From at-tachment to damage: defined genes of Candida albi-cans mediate adhesion, invasion and damage during interaction with oral epithelial cells[J]. PLoS One, 2011,6(2):e17046.
[59] Bachtiar EW, Bachtiar BM, Jarosz LM , et al. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation[J]. Front Cell Infect Microbiol, 2014,4:94.
[60] Janus MM, Crielaard W, Volgenant CM , et al. Can-dida albicans alters the bacterial microbiome of early in vitro oral biofilms[J]. J Oral Microbiol, 2017,9(1):1270613.
[61] Lambooij JM, Hoogenkamp MA, Brandt BW , et al. Fungal mitochondrial oxygen consumption induces the growth of strict anaerobic bacteria[J]. Fungal Genet Biol, 2017,109:1-6.
[62] Lopez-Medina E, Fan D, Coughlin LA , et al. Candida albicans inhibits Pseudomonas aeruginosa virulence through suppression of pyochelin and pyoverdine biosynjournal[J]. PLoS Pathog, 2015,11(8):e1005129.
[63] Fan D, Coughlin LA, Neubauer MM , et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization[J]. Nat Med, 2015,21(7):808-814.
[64] Imperi F, Massai F, Facchini M , et al. Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity[J]. Proc Natl Acad Sci USA, 2013,110(18):7458-7463.
[65] Mason KL, Erb Downward JR, Mason KD , et al. Candida albicans and bacterial microbiota interac-tions in the cecum during recolonization following broad-spectrum antibiotic therapy[J]. Infect Immun, 2012,80(10):3371-3380.
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 杨倩娟,宋致馨,方世殊,顾泽旭,金作林,刘倩. 基于唾液代谢组学的口腔疾病研究新进展[J]. 国际口腔医学杂志, 2023, 50(3): 321-328.
[3] 陈艺菲,张滨婧,冯淑琦,徐锐,杨淑娴,李雨庆. 黄酮类化合物对口腔微生物的影响及其机制[J]. 国际口腔医学杂志, 2023, 50(2): 210-216.
[4] 刘千溪,吴佳益,任彪,黄睿洁. 粪肠球菌与口腔微生物相互作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 290-295.
[5] 陈静,葛子瑜,俞婷婷,章燕珍. 帕金森病与口腔疾病相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 218-224.
[6] 易祖木,王昕宇,伍颖颖. 糖尿病患者口腔细菌多样性的变化[J]. 国际口腔医学杂志, 2020, 47(5): 522-529.
[7] 王蕊,盖阔,刘梦齐,蒋丽. 原子力显微镜在细菌黏附力学研究中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 687-692.
[8] 姜雪,黄淡远,廖文. 磷酸钛氧钾激光应用于口腔疾病治疗的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 456-462.
[9] 李伟,周京琳. 口腔代谢组学研究[J]. 国际口腔医学杂志, 2019, 46(3): 249-252.
[10] 吴东蕾,刘静. 氧化应激损伤与口腔疾病相关性的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 62-67.
[11] 陶艳,周瑜,陈谦明. 维生素B12缺乏口腔表征的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 78-83.
[12] 关淑元, 周媛, 周学东, 郑黎薇. 孕前口腔保健及遗传咨询[J]. 国际口腔医学杂志, 2018, 45(3): 324-330.
[13] 周羽洁, 任彪, 程磊, 周学东. 白假丝酵母菌在义齿性口炎中的相关研究[J]. 国际口腔医学杂志, 2017, 44(4): 477-483.
[14] 吴佳梦, 王效英. 外泌体与口腔疾病关系的研究进展[J]. 国际口腔医学杂志, 2017, 44(3): 336-339.
[15] 刘诗雨,何金枝,李明云. 白假丝酵母菌与龋病的相关性及其致龋机制[J]. 国际口腔医学杂志, 2017, 44(1): 103-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .