国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (5): 552-557.doi: 10.7518/gjkq.2019053

• 综述 • 上一篇    下一篇

金属-有机骨架及其复合材料在生物医学领域中的研究进展

蒋晓鸽1,吴家馨1,裴锡波2()   

  1. 1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医学院 成都 610041
    2. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院修复科 成都 610041
  • 收稿日期:2018-09-20 修回日期:2019-04-17 出版日期:2019-09-01 发布日期:2019-09-10
  • 通讯作者: 裴锡波
  • 作者简介:蒋晓鸽,学士,Email: 1623113557@qq.com
  • 基金资助:
    国家自然科学基金(81601613);四川大学人才培养平台专项建设项目(SCUKG015)

Research progress on metal-organic frameworks and their complex in biomedical field

Jiang Xiaoge1,Wu Jiaxin1,Pei Xibo2()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-09-20 Revised:2019-04-17 Online:2019-09-01 Published:2019-09-10
  • Contact: Xibo Pei
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81601613);Talent Training Platform Special Construction Project of Sichuan University(SCUKG015)

摘要:

金属-有机骨架(MOF)也被称为配位聚合物,是一种新型的有机-无机杂化晶态多孔材料,由金属离子或者金属离子簇作为节点,多配位点的有机配体作为连接点,通过配位作用自组装形成高度规则的网状骨架结构。MOF及复合材料的特殊性能促进其在生物医学领域的应用,包括种植体表面涂层改性、药物载体、储存气体、辅助生物体内显影成像等。本文对MOF材料在生物医学领域以上几个方面应用的研究情况进行综述。

关键词: 金属-有机骨架, 改性, 载药, 储气, 显影成像

Abstract:

Metal-organic frameworks (MOFs), also known as coordination polymers, is a new type of organic-inorganic hybrid crystalline porous materials. It is composed of a metal ion or metal ion cluster as the node and a polydentate organic ligand as the join point. The regular network skeleton structure is formed by their self-assembly. The special property of MOFs and their complex promotes their applications in biomedicine. The research directions at present include implant surface coating modification, drug loading, gas storage and imaging. The review of the literature attempts to address the application of MOFs in biomedicine.

Key words: metal-organic framework, modification, drug delivery, gas storage, imaging

中图分类号: 

  • R783.1
[1] Chernikova V, Shekhah O, Eddaoudi M . Advanced fabrication method for the preparation of MOF thin films: liquid-phase epitaxy approach meets spin coating method[J]. ACS Appl Mater Interfaces, 2016,8(31):20459-20464.
[2] Furukawa H, Müller U, Yaghi OM . “Heterogeneity within order” in metal-organic frameworks[J]. Angew Chem Int Ed Engl, 2015,54(11):3417-3430.
[3] Hoskins BF, Robson R . Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. J Am Chem Soc, 1989,111(15):5962-5964.
[4] Civantos A , MartínezCampos E, Ramos V, et al. Titanium coatings surface modifications: toward clinically useful bioactive implants[J]. ACS Biomater Sci Eng, 2017,3(7):1245-1261.
[5] Yurttutan ME, Keskin A . Evaluation of the effects of different sand particles that used in dental implant roughened for osseointegration[J]. BMC Oral Health, 2018,18(1):47.
[6] Brunetto PS, Slenters TV, Fromm KM . In vitro biocompatibility of new silver (Ⅰ) coordination compound coated-surfaces for dental implant applications[J]. Materials (Basel), 2011,4(2):355-367.
[7] Chen J, Zhang X, Huang C , et al. Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films[J]. J Biomed Mater Res A, 2017,105(3):834-846.
[8] Zhang X, Chen J, Pei X , et al. Enhanced osseointegration of porous titanium modified with zeolitic imidazolate framework-8[J]. ACS Appl Mater Interfaces, 2017,9(30):25171-25183.
[9] Gao X, Hai X, Baigude H , et al. Fabrication of functional hollow microspheres constructed from MOF shells: promising drug delivery systems with high loading capacity and targeted transport[J]. Sci Rep, 2016,6:37705.
[10] Shu F, Lv D, Song XL , et al. Fabrication of a hyaluronic acid conjugated metal organic framework for targeted drug delivery and magnetic resonance imaging[J]. Rsc Advances, 2018,8(12):6581-6589.
[11] Sun CY, Qin C, Wang XL , et al. Metal-organic frameworks as potential drug delivery systems[J]. Expert Opin Drug Deliv, 2013,10(1):89-101.
[12] Horcajada P, Serre C, Vallet-Regí M , et al. Metal-organic frameworks as efficient materials for drug delivery[J]. Angew Chem Int Ed Engl, 2006,45(36):5974-5978.
[13] Tan LL, Li H, Qiu YC , et al. Stimuli-responsive metal-organic frameworks gated by pillar[5]arene supramolecular switches[J]. Chem Sci, 2015,6(3):1640-1644.
[14] Wu YN, Zhou M, Li S , et al. Magnetic metal-organic frameworks: γ-Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery[J]. Small, 2014,10(14):2927-2936.
[15] Ke F, Yuan YP, Qiu LG , et al. Facile fabrication of magnetic metal-organic framework nanocomposites for potential targeted drug delivery[J]. J Mater Chem, 2011,21(11):3843-3848.
[16] Cunha D, Yahia MB, Hall S , et al. Rationale of drug encapsulation and release from biocompatible porous metal-organic frameworks[J]. Chem Mater, 2013,25(14):2767-2776.
[17] Zhu X, Gu J, Wang Y , et al. Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release[J]. Chem Commun (Camb), 2014,50(63):8779-8782.
[18] He C, Lu K, Liu D , et al. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells[J]. J Am Chem Soc, 2014,136(14):5181-5184.
[19] Lucena FR, de Araújo LC, Rodrigues Mdo D , et al. Induction of cancer cell death by apoptosis and slow release of 5-fluoracil from metal-organic frameworks Cu-BTC[J]. Biomed Pharmacother, 2013,67(8):707-713.
[20] Au KM, Satterlee A, Min Y , et al. Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: turning a bone antiresorptive agent into an anticancer therapeutic[J]. Biomaterials, 2016,82:178-193.
[21] Chowdhuri AR, Laha D, Chandra S , et al. Synjournal of multifunctional upconversion NMOFs for targeted antitumor drug delivery and imaging in triple negative breast cancer cells[J]. Chem Eng J, 2017,319(Complete):200-211.
[22] Nabipour H, Soltani B, Ahmadi Nasab N . Gentamicin loaded Zn2(bdc)2(dabco) frameworks as efficient materials for drug delivery and antibacterial activity[J]. J Inorg Organomet P, 2018,28(3):1206-1213.
[23] Wo Y, Brisbois EJ, Bartlett RH , et al. Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO)[J]. Biomater Sci, 2016,4(8):1161-1183.
[24] Uzunova EL, Mikosch H . A theoretical study of nitric oxide adsorption and dissociation on copper-exchanged zeolites SSZ-13 and SAPO-34: the impact of framework acid-base properties[J]. Phys Chem Chem Phys, 2016,18(16):11233-11242.
[25] Xue C, Xu T . Metal-organic frameworks as host materials for storage and slow-releasing of medicinal nitric oxide[J]. Chemistry, 2013,76(12):1086-1090.
[26] Mckinlay AC, Xiao B, Wragg DS , et al. Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks[J]. J Am Chem Soc, 2008,130(31):10440-10444.
[27] Khan AH, Barth B, Hartmann M , et al. Nitric oxide adsorption in MIL-100(Al) MOF studied by solid-state NMR[J]. J Phys Chem C, 2018,112(24):12723-12730.
[28] Xiao B, Wheatley PS, Zhao X , et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework[J]. J Am Chem Soc, 2007,129(5):1203-1209.
[29] Katharina P, Frank H, Michael F , et al. Tuning the nitric oxide release behavior of amino functionalized HKUST-1[J]. Micropor Mesopor Mat, 2015,216:118-126.
[30] Nguyen JG, Tanabe KK, Cohen SM . Postsynthetic diazeniumdiolate formation and NO release from MOFs[J]. Cryst Eng Comm, 2010,12(8):2335-2338.
[31] Cohen SM . Postsynthetic methods for the functionalization of metal-organic frameworks[J]. Chem Rev, 2012,112(2):970-1000.
[32] Pinto RV, Antunes F, Pires J , et al. Vitamin B3 metal-organic frameworks as potential delivery vehicles for therapeutic nitric oxide[J]. Acta Biomater, 2017,51:66-74.
[33] Miller SE, Teplensky MH, Moghadam PZ , et al. Metal-organic frameworks as biosensors for luminescence-based detection and imaging[J]. Interface Focus, 2016,6(4):20160027.
[34] deKrafft KE, Xie Z, Cao G , et al. Iodinated nanoscale coordination polymers as potential contrast agents for computed tomography[J]. Angew Chem Int Ed Engl, 2009,48(52):9901-9904.
[35] Horcajada P, Chalati T, Serre C , et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nat Mater, 2010,9(2):172-178.
[36] Zhou J, Tian G, Zeng L , et al. Nanoscaled metal-organic frameworks for biosensing, imaging, and cancer therapy[J]. Adv Healthc Mater, 2018,7(10):e1800022.
[37] Cai W, Gao H, Chu C , et al. Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imaging-guided cancer therapy[J]. ACS Appl Mater Interfaces, 2017,9(3):2040-2051.
[38] Tian C, Zhu L, Lin F , et al. Poly(acrylic acid) bridged gadolinium metal-organic framework-gold nanoparticle composites as contrast agents for computed tomography and magnetic resonance bimodal imaging[J]. ACS Appl Mater Interfaces, 2015,7(32):17765-17775.
[39] Cai W, Gao H, Chu C , et al. Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imaging-guided cancer therapy[J]. ACS Appl Mater Interfaces, 2017,9(3):2040-2051.
[40] Wang D, Zhou J, Chen R , et al. Controllable synjournal of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy[J]. Biomaterials, 2016,100:27-40.
[1] 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746.
[2] 张曦丹,孙吉宇,付馨靓,甘雪琦. 介孔硅酸钙纳米材料在牙体牙髓及颅颌面修复领域的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 476-482.
[3] 陈亮,丁一,孟姝. 宿主调节治疗在牙周病治疗中的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 706-710.
[4] 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444.
[5] 刘育豪,袁泉,张士文. 基于共价接枝的钛种植体载药抗菌涂层的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 228-233.
[6] 刘梦齐,盖阔,蒋丽. 抗菌性口腔种植材料的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 516-521.
[7] 金鑫, 杨军星, 王英男, 刘志辉, 王博蔚. 海藻酸-壳聚糖微球的制备及其在生物医药领域的应用[J]. 国际口腔医学杂志, 2018, 45(4): 414-419.
[8] 罗惟丹, 李明云, 周学东, 程磊. 纳米羟磷灰石在牙体修复和牙髓治疗领域的应用[J]. 国际口腔医学杂志, 2018, 45(2): 192-198.
[9] 尹程程 李保胜 蔡青 孟维艳. 周围神经损伤后的神经再生和种植体周围神经再生的影响因素[J]. 国际口腔医学杂志, 2016, 43(1): 69-.
[10] 孙磊 夏荣. 钛基种植体表面抗菌改性的研究进展[J]. 国际口腔医学杂志, 2015, 42(4): 475-479.
[11] 李蕾, 乔祥晨 崔彩云, 郭维华, 田卫东, . 光引发聚合改性明胶用于牙组织工程的可能性初探[J]. 国际口腔医学杂志, 2015, 42(3): 265-268.
[12] 杜桥 牛光良. 氧化锆的表面粗化和改性[J]. 国际口腔医学杂志, 2015, 42(1): 97-101.
[13] 樊牮,邹耿森,陈江. 钛种植体表面纳米改性及其与机体免疫应答[J]. 国际口腔医学杂志, 2014, 41(6): 691-693.
[14] 林曦,周磊. 纯钛种植体表面特征的研究进展[J]. 国际口腔医学杂志, 2014, 41(6): 677-680.
[15] 庄秀妹 邓飞龙. 钛表面及其涂层纳米化对骨结合的影响和机制[J]. 国际口腔医学杂志, 2014, 41(4): 427-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .