国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (3): 263-269.doi: 10.7518/gjkq.2019034

• 信号通路专栏 • 上一篇    下一篇

Hippo信号通路在骨代谢中的研究进展

张歆缘,王斌,于晖,朱丽文,向琳()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院种植科 成都 610041
  • 收稿日期:2018-05-22 修回日期:2019-01-16 出版日期:2019-05-01 发布日期:2019-06-05
  • 通讯作者: 向琳
  • 作者简介:张歆缘,学士,Email:Ninazhang950411@163.com
  • 基金资助:
    国家自然科学基金(81701007);四川省科技计划项目(2018RZ0087);中央高校基本科研业务费专项资金(2017SCU12056);中央高校基本科研业务费专项资金(2018SCUH0006);中国博士后科学基金(2018M631091);四川大学华西口腔医院青年科学研究基金项目(2016-11)

Research progress on role of Hippo pathway in bone metabolism

Xinyuan Zhang,Bin Wang,Hui Yu,Liwen Zhu,Lin Xiang()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-05-22 Revised:2019-01-16 Online:2019-05-01 Published:2019-06-05
  • Contact: Lin Xiang
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81701007);Sichuan Science and Technology Program(2018RZ0087);Fundamental Research Funds for the Central Universities(2017SCU12056);Fundamental Research Funds for the Central Universities(2018SCUH0006);China Postdoctoral Science Foundation(2018M631091);Youth Science Foundation of West China Hospital of Stomatology of Sichuan University(2016-11)

摘要:

在哺乳动物中,Hippo信号通路具有高度保守性,其在调节骨代谢、维持骨骼正常生理功能方面有重要作用。哺乳动物sterile 20样激酶(MST)1/2、大肿瘤抑制因子(LATS)1/2和Yes相关蛋白(YAP)/携带PDZ结合基序的转录辅助激活物(TAZ)为Hippo信号通路核心组件,在其上下游多种转录因子的介导下,Hippo信号通路调控成骨细胞、破骨细胞、软骨细胞等细胞的生理活动。本文就Hippo信号通路在骨代谢中的研究进展进行综述,为骨代谢相关疾病的研究和治疗提供可能的思路和策略。

关键词: Hippo信号通路, 哺乳动物sterile 20样激酶, Yes相关蛋白, 骨代谢

Abstract:

In mammals, the Hippo signalling pathway is highly conserved and regulates bone metabolism and maintains the essential physiological functions of bones. Mammalian sterile 20-like kinase 1/2, large tumour suppressor 1/2 and the Yes-associated protein/transcriptional coactivator with PDZ-binding motif are the core components of the Hippo signalling pathway. This pathway mediates the physiological functions of osteoblasts, osteoclasts and chondrocytes under the regulation of multiple transcription factors upstream and downstream. In this study, we highlight the recent research progress on the mechanism underlying bone metabolism in the Hippo signalling pathway. We hope that this review can provide new ideas and strategies for further investigations and treatment of bone metabolism-related diseases.

Key words: Hippo signaling pathway, mammalian sterile 20-like kinase, Yes associated protein, bone metabolism

中图分类号: 

  • Q257
[1] Harvey KF, Pfleger CM, Hariharan IK . The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis[J]. Cell, 2003,114(4):457-467.
doi: 10.1016/S0092-8674(03)00557-9 pmid: 12941274
[2] Justice RW, Zilian O, Woods DF , et al. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation[J]. Genes Dev, 1995,9(5):534-546.
doi: 10.1101/gad.9.5.534 pmid: 7698644
[3] Johnson R, Halder G . The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment[J]. Nat Rev Drug Discov, 2014,13(1):63-79.
doi: 10.1038/nrd4161 pmid: 4167640
[4] Yu FX, Zhao B, Guan KL . Hippo pathway in organ size control, tissue homeostasis, and cancer[J]. Cell, 2015,163(4):811-828.
doi: 10.1016/j.cell.2015.10.044 pmid: 4638384
[5] Wang J, Martin JF . Hippo pathway: an emerging regulator of craniofacial and dental development[J]. J Dent Res, 2017,96(11):1229-1237.
doi: 10.1177/0022034517719886 pmid: 28700256
[6] Okamoto K, Nakashima T, Shinohara M , et al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems[J]. Physiol Rev, 2017,97(4):1295-1349.
doi: 10.1152/physrev.00036.2016 pmid: 28814613
[7] Scheel H, Hofmann K . A novel interaction motif, SARAH, connects three classes of tumor suppressor[J]. Curr Biol, 2003,13(23):R899-R900.
doi: 10.1016/j.cub.2003.11.007
[8] Gladden AB, Hebert AM, Schneeberger EE , et al. The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex[J]. Dev Cell, 2010,19(5):727-739.
doi: 10.1016/j.devcel.2010.10.008 pmid: 21074722
[9] Das Thakur M, Feng Y, Jagannathan R , et al. Ajuba LIM proteins are negative regulators of the Hippo signaling pathway[J]. Curr Biol, 2010,20(7):657-662.
doi: 10.1016/j.cub.2010.02.035 pmid: 20303269
[10] Hansen CG, Moroishi T, Guan KL . YAP and TAZ: a nexus for Hippo signaling and beyond[J]. Trends Cell Biol, 2015,25(9):499-513.
doi: 10.1016/j.tcb.2015.05.002 pmid: 26045258
[11] Lee J, Youn BU, Kim K , et al. Mst2 controls bone homeostasis by regulating osteoclast and osteoblast differentiation[J]. J Bone Miner Res, 2015,30(9):1597-1607.
doi: 10.1002/jbmr.2503 pmid: 257616702
[12] Oh S, Lee D, Kim T , et al. Crucial role for Mst1 and Mst2 kinases in early embryonic development of the mouse[J]. Mol Cell Biol, 2009,29(23):6309-6320.
doi: 10.1128/MCB.00551-09
[13] Katagiri K, Imamura M, Kinashi T . Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion[J]. Nat Immunol, 2006,7(9):919-928.
doi: 10.1016/S0020-0190(99)00120-9 pmid: 16892067
[14] Zhou D, Medoff BD, Chen L , et al. The Nore1B/Mst1 complex restrains antigen receptor-induced proliferation of naïve T cells[J]. Proc Natl Acad Sci USA, 2008,105(51):20321-20326.
doi: 10.1073/pnas.0810773105 pmid: 19073936
[15] Mou F, Praskova M, Xia F , et al. The Mst1 and Mst2 kinases control activation of rho family GTPases and thymic egress of mature thymocytes[J]. J Exp Med, 2012,209(4):741-759.
doi: 10.1084/jem.20111692 pmid: 22412158
[16] Salojin KV, Hamman BD, Chang WC , et al. Genetic deletion of Mst1 alters T cell function and protects against autoimmunity[J]. PLoS One, 2014,9(5):e98151.
doi: 10.1371/journal.pone.0098151
[17] Varelas X . The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease[J]. Development, 2014,141(8):1614-1626.
doi: 10.1242/dev.102376 pmid: 24715453
[18] Zhu Y, Wu Y, Cheng J , et al. Pharmacological activation of TAZ enhances osteogenic differentiation and bone formation of adipose-derived stem cells[J]. Stem Cell Res, Ther, 2018,9(1):53.
doi: 10.1186/s13287-018-0799-z pmid: 29514703
[19] Pan H, Xie Y, Zhang Z , et al. YAP-mediated mechanotransduction regulates osteogenic and adipogenic differentiation of BMSCs on hierarchical structure[J]. Colloids Surf B Biointerfaces, 2017,152:344-353.
doi: 10.1016/j.colsurfb.2017.01.039 pmid: 28131959
[20] 王飞, 张慧宇, 窦予昕 , 等. 降钙素基因相关肽通过Hippo通路调控小鼠骨髓间充质干细胞成骨分化的实验研究[J]. 华西口腔医学杂志, 2016,34(3):286-290.
doi: 10.7518/hxkq.2016.03.014
Wang F, Zhang HY, Dou YX , et al. Calcitonin gene-related peptide-induced osteogenic differentiation of mouse bone marrow stromal cells through Hippo pathway in vitro[J]. West Chin J Stomatol, 2016,34(3):286-290.
doi: 10.7518/hxkq.2016.03.014
[21] Levaot N, Simoncic PD, Dimitriou ID , et al. 3BP2-deficient mice are osteoporotic with impaired osteoblast and osteoclast functions[J]. J Clin Invest, 2011,121(8):3244-3257.
doi: 10.1172/JCI45843 pmid: 3148735
[22] Matsumoto Y, La Rose J, Kent OA , et al. Reciprocal stabilization of ABL and TAZ regulates osteoblastogenesis through transcription factor RUNX2[J]. J Clin Invest, 2016,126(12):4482-4496.
doi: 10.1172/JCI87802 pmid: 27797343
[23] Kegelman CD, Mason DE, Dawahare JH , et al. Skeletal cell YAP and TAZ combinatorially promote bone development[J]. FASEB J, 2018,32(5):2706-2721.
doi: 10.1096/fj.201700872R pmid: 29401582
[24] Xiong J, Almeida M , O’Brien CA. The YAP/TAZ transcriptional co-activators have opposing effects at different stages of osteoblast differentiation[J]. Bone, 2018,112:1-9.
doi: 10.1016/j.bone.2018.04.001 pmid: 29626544
[25] Jiang J, Chang W, Fu Y , et al. SAV1 represses the development of human colorectal cancer by regulating the Akt-mTOR pathway in a YAP-dependent manner[J]. Cell Prolif, 2017,50(4). doi: 10.1111/cpr. 12351.
doi: 10.1111/cpr.12351 pmid: 28618450
[26] Zhao L, Guan H, Song C , et al. YAP1 is essential for osteoclastogenesis through a TEADs-dependent mechanism[J]. Bone, 2018,110:177-186.
doi: 10.1016/j.bone.2018.01.035 pmid: 29432919
[27] Nagase Y, Iwasawa M, Akiyama T , et al. Anti-apoptotic molecule Bcl-2 regulates the differentiation, activation, and survival of both osteoblasts and osteoclasts[J]. J Biol Chem, 2009,284(52):36659-36669.
doi: 10.1074/jbc.M109.016915 pmid: 19846553
[28] Li W, Dong S, Wei W , et al. The role of transcriptional coactivator TAZ in gliomas[J]. Oncotarget, 2016,7(50):82686-82699.
doi: 10.18632/oncotarget.12625 pmid: 27764783
[29] Karystinou A, Roelofs AJ, Neve A , et al. Yes-associated protein (YAP) is a negative regulator of chondrogenesis in mesenchymal stem cells[J]. Arthritis Res Ther, 2015,17:147.
doi: 10.1186/s13075-015-0639-9 pmid: 4449558
[30] Deng Y, Wu A, Li P , et al. Yap1 regulates multiple steps of chondrocyte differentiation during skeletal development and bone repair[J]. Cell Rep, 2016,14(9):2224-2237.
doi: 10.1016/j.celrep.2016.02.021 pmid: 26923596
[31] Yang B, Sun H, Song F , et al. YAP1 negatively regulates chondrocyte differentiation partly by activating the β-catenin signaling pathway[J]. Int J Biochem Cell Biol, 2017,87:104-113.
doi: 10.1016/j.biocel.2017.04.007 pmid: 28438716
[32] Li C, Wang S, Xing Z , et al. A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis[J]. Nat Cell Biol, 2017,19(2):106-119.
doi: 10.1038/ncb3464 pmid: 5336186
[33] Aoyama E, Kubota S, Khattab HM , et al. CCN2 enhances RANKL-induced osteoclast differentiation via direct binding to RANK and OPG[J]. Bone, 2015,73:242-248.
doi: 10.1016/j.bone.2014.12.058 pmid: 255545972
[34] Nishida T, Emura K, Kubota S , et al. CCN family 2/connective tissue growth factor (CCN2/CTGF) promotes osteoclastogenesis via induction of and interaction with dendritic cell-specific transmembrane protein (DC-STAMP)[J]. J Bone Miner Res, 2011,26(2):351-363.
doi: 10.1002/jbmr.222 pmid: 20721934
[35] Del Re DP, Matsuda T, Zhai P , et al. Proapoptotic Rassf1A/Mst1 signaling in cardiac fibroblasts is protective against pressure overload in mice[J]. J Clin Invest, 2010,120(10):3555-3567.
doi: 10.1172/JCI43569 pmid: 2947240
[36] Lock FE, Underhill-Day N, Dunwell T , et al. The RASSF8 candidate tumor suppressor inhibits cell growth and regulates the Wnt and NF-kappaB signaling pathways[J]. Oncogene, 2010,29(30):4307-4316.
doi: 10.1038/onc.2010.192 pmid: 20514026
[37] Song H, Kim H, Lee K , et al. Ablation of Rassf2 induces bone defects and subsequent haematopoietic anomalies in mice[J]. EMBO J, 2012,31(5):1147-1159.
doi: 10.1038/emboj.2011.480 pmid: 22227519
[38] Guo W, Keckesova Z, Donaher JL , et al. Slug and Sox9 cooperatively determine the mammary stem cell state[J]. Cell, 2012,148(5):1015-1028.
doi: 10.1016/j.cell.2012.02.008 pmid: 3305806
[39] Lin Y, Li XY, Willis AL , et al. Snail1-dependent control of embryonic stem cell pluripotency and lineage commitment[J]. Nat Commun, 2014,5:3070.
doi: 10.1038/ncomms4070 pmid: 24401905
[40] Tang Y, Weiss SJ . Snail/Slug-YAP/TAZ complexes cooperatively regulate mesenchymal stem cell function and bone formation[J]. Cell Cycle, 2017,16(5):399-405.
doi: 10.1080/15384101.2017.1280643 pmid: 28112996
[41] Tang Y, Feinberg T, Keller ET , et al. Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation[J]. Nat Cell Biol, 2016,18(9):917-929.
doi: 10.1038/ncb3394 pmid: 27479603
[42] Jang EJ, Jeong H, Kang JO , et al. TM-25659 enhances osteogenic differentiation and suppresses adipogenic differentiation by modulating the transcriptional co-activator TAZ[J]. Br J Pharmacol, 2012,165(5):1584-1594.
doi: 10.1111/j.1476-5381.2011.01664.x pmid: 21913895
[43] Lin Z, Fateh A, Salem DM , et al. Periosteum: biology and applications in craniofacial bone regeneration[J]. J Dent Res, 2014,93(2):109-116.
doi: 10.1177/0022034513506445
[44] Wang C, Inzana JA, Mirando AJ , et al. NOTCH signaling in skeletal progenitors is critical for fracture re- pair[J]. J Clin Invest, 2016,126(4):1471-1481.
doi: 10.1172/JCI80672 pmid: 26950423
[45] Manderfield LJ, Aghajanian H, Engleka KA , et al. Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest[J]. Development, 2015,142(17):2962-2971.
doi: 10.1242/dev.125807 pmid: 26253400
[46] Zanconato F, Forcato M, Battilana G , et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth[J]. Nat Cell Biol, 2015,17(9):1218-1227.
doi: 10.1038/ncb3216 pmid: 26258633
[47] You B, Yang YL, Xu Z , et al. Inhibition of ERK1/2 down-regulates the Hippo/YAP signaling pathway in human NSCLC cells[J]. Oncotarget, 2015,6(6):4357-4368.
doi: 10.18632/oncotarget.2974 pmid: 4414195
[48] Wang DY, Wu YN, Huang JQ , et al. Hippo/YAP signaling pathway is involved in osteosarcoma chemoresistance[J]. Chin J Cancer, 2016,35:47.
doi: 10.1186/s40880-016-0109-z pmid: 4875723
[49] 朱忠胜, 张春林, 汪泱 . Hippo信号通路作用分子TAZ在人骨肉瘤及骨肉瘤干细胞中的表达[J]. 中国骨与关节杂志, 2014,3(2):130-134.
doi: 10.3969/j.issn.2095-252X.2014.02.012
Zhu ZS, Zhang CL, Wang Y . Expressions of effective molecules transcriptional coactivator with plasma dissociated zircon-binding motif of Hippo signaling pathway in human osteosarcomas and osteosarcoma stem cells[J]. Chin J Bone Tumor Bone Dis, 2014,3(2):130-134.
doi: 10.3969/j.issn.2095-252X.2014.02.012
[1] 朱轩智,赵蕾. 甲状腺功能减退症与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 380-384.
[2] 孙坚炜,雷利红,谭静怡,陈莉丽. 微小RNA 155对骨免疫的调控及其在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 607-615.
[3] 吴琪, 刘程程, 郑黎薇, 李继遥, 周学东, 徐欣. 肠道微生物调控骨代谢的研究进展[J]. 国际口腔医学杂志, 2017, 44(6): 628-635.
[4] 伍颖颖,宫苹. 胰岛素对糖尿病大鼠种植体周骨组织代谢影响的研究[J]. 国际口腔医学杂志, 2017, 44(2): 183-188.
[5] 胥欣 王艳民 白丁. 沉默交配型信息调节因子2同源蛋白1与骨和软骨代谢的关系[J]. 国际口腔医学杂志, 2016, 43(5): 569-572.
[6] 郝旭蕾 梁新华. HIPPO通路在口腔系统发育和疾病中的研究进展[J]. 国际口腔医学杂志, 2016, 43(1): 52-.
[7] 於丽明1 沈庆平1 陈锦坤2. 脂联蛋白及其与成骨和骨代谢的关系[J]. 国际口腔医学杂志, 2015, 42(6): 681-684.
[8] 邹华伟,张士文,袁泉. 慢性肾脏病对牙周组织的影响[J]. 国际口腔医学杂志, 2014, 41(6): 730-734.
[9] 陈明月1,2 汪昌宁1. 过氧化物酶增生物激活受体γ及其分子作用机制与牙周炎[J]. 国际口腔医学杂志, 2014, 41(5): 598-602.
[10] 吕琳琳 李纾. Yes相关蛋白基因在牙发育中的作用[J]. 国际口腔医学杂志, 2013, 40(6): 760-763.
[11] 王蕊综述 吴哲审校. 辛伐他汀在骨代谢中作用的研究进展[J]. 国际口腔医学杂志, 2011, 38(3): 335-338.
[12] 马婷综述 张健审校. 唑来膦酸局部给药影响骨代谢在口腔医学中的应用[J]. 国际口腔医学杂志, 2011, 38(3): 349-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .