国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (1): 43-47.doi: 10.7518/gjkq.2019.01.008

• 综述 • 上一篇    下一篇

胚胎小鼠颌下腺分支形态发生及其影响因素

刘志凯,王淳艺,李春洁()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院头颈肿瘤外科 成都 610041
  • 收稿日期:2018-04-15 修回日期:2018-08-02 出版日期:2019-01-01 发布日期:2019-01-11
  • 通讯作者: 李春洁
  • 作者简介:刘志凯,学士,Email:liuzhikai2015@qq.com
  • 基金资助:
    国家自然科学基金(81500807)

Research progress on submandibular gland branching-morphogenesis and its influencing factors in embryonic mice

Zhikai Liu,Chunyi Wang,Chunjie Li()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Tumor Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-04-15 Revised:2018-08-02 Online:2019-01-01 Published:2019-01-11
  • Contact: Chunjie Li
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81500807)

摘要:

颌下腺作为重要的唾液腺组成部分,其临床相关实验与器官重构的意义在近年来越发受到重视。本文综述了近年来国内外颌下腺的研究进展,介绍了颌下腺分支形态发生的基本概念,分析了分支形态发生过程中相关的影响因素,包括生长因子、激素、微小RNA等多个方面。

关键词: 颌下腺, 分支形态发生, 表皮生长因子, 成纤维细胞生长因子, 微小RNA

Abstract:

As an important part of salivary glands, submandibular gland’s significance of clinical experiments and organ reconstruction is drawing more attention in recent years. In this paper, starting from the research status at abroad, we point out the submandibular gland and its basic concepts of branching morphogenesis. Then we introduce the relevant factors of affecting research in recent years such as the growth factors, hormone and micro RNA, etc..

Key words: submandibular gland, branching-morphogenesis, epidermal growth factor, fibroblast growth factor, microRNA

中图分类号: 

  • R782
[1] Sakai T . Development and regeneration of salivary gland toward for clinical application[J]. Oral Sci Int, 2016,13(1):7-14.
doi: 10.1016/S1348-8643(15)00040-3
[2] Tucker AS . Salivary gland development[J]. Semin Cell Dev Biol, 2007,18(2):237-244.
doi: 10.1016/j.semcdb.2007.01.006
[3] Koyama N, Hayashi T, Kashimata M . Regulation of branching morphogenesis in fetal mouse submandi-bular gland by signaling pathways activated by growth factors and α6 integrin[J]. J Oral Biosci, 2011,53(4):298-303.
doi: 10.1016/S1349-0079(11)80022-8
[4] Häärä O, Koivisto T, Miettinen PJ . EGF-receptor re-gulates salivary gland branching morphogenesis by supporting proliferation and maturation of epithelial cells and survival of mesenchymal cells[J]. Differen-tiation, 2009,77(3):298-306.
doi: 10.1016/j.diff.2008.10.006 pmid: 19272528
[5] Kobayashi F, Matsuzaka K, Inoue T . The effect of basic fibroblast growth factor on regeneration in a surgical wound model of rat submandibular glands[J]. Int J Oral Sci, 2016,8(1):16-23.
doi: 10.1038/ijos.2015.36 pmid: 4822181
[6] Cortez VS, Cervantes-Barragan L, Robinette ML , et al. Transforming growth factor-β signaling guides the differentiation of innate lymphoid cells in salivary glands[J]. Immunity, 2016,44(5):1127-1139.
doi: 10.1016/j.immuni.2016.03.007 pmid: 27156386
[7] Gao P, Qiao XH, Gou LM , et al. TGF-β1 attenuated branching morphogenesis of embryonic murine submandibular gland through Smad3 activation[J]. Anat Histol Embryol, 2017,46(6):600-605.
doi: 10.1111/ahe.12295 pmid: 28884513
[8] Sathi GA, Farahat M, Hara ES , et al. MCSF orches-trates branching morphogenesis in developing sub-mandibular gland tissue[J]. J Cell Sci, 2017,130(9):1559-1569.
doi: 10.1242/jcs.196907 pmid: 28348107
[9] Ingham PW, McMahon AP . Hedgehog signaling in animal development: paradigms and principles[J]. Genes Dev, 2001,15(23):3059-3087.
doi: 10.1101/gad.938601 pmid: 11731473
[10] Mizukoshi K, Koyama N, Hayashi T , et al. Shh/Ptch and EGF/ErbB cooperatively regulate branching morphogenesis of fetal mouse submandibular glands[J]. Dev Biol, 2016,412(2):278-287.
doi: 10.1016/j.ydbio.2016.02.018 pmid: 26930157
[11] Obana-Koshino A, Ono H, Miura J , et al. Melatonin inhibits embryonic salivary gland branching morpho-genesis by regulating both epithelial cell adhesion and morphology[J]. PLoS One, 2015,10(4):e0119960.
doi: 10.1371/journal.pone.0119960 pmid: 25876057
[12] Jevnaker AM, Osmundsen H . MicroRNA expression profiling of the developing murine molar tooth germ and the developing murine submandibular salivary gland[J]. Arch Oral Biol, 2008,53(7):629-645.
doi: 10.1016/j.archoralbio.2008.01.014 pmid: 18346711
[13] Gluck C, Min S, Oyelakin A , et al. RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation[J]. BMC Genomics, 2016,17(1):923.
doi: 10.1186/s12864-016-3228-7 pmid: 27852218
[14] Rebustini IT, Hayashi T, Reynolds AD , et al. miR-200c regulates FGFR-dependent epithelial prolife-ration via Vldlr during submandibular gland bran-ching morphogenesis[J]. Development, 2012,139(1):191-202.
doi: 10.1242/dev.070151 pmid: 22115756
[15] Hayashi T, Koyama N, Gresik EW , et al. Detection of EGF-dependent microRNAs of the fetal mouse submandibular gland at embryonic day 13[J]. J Med Invest, 2009,56(Suppl):250-252.
doi: 10.2152/jmi.56.250 pmid: 20224191
[16] Hayashi T, Koyama N, Azuma Y , et al. Mesenchymal miR-21 regulates branching morphogenesis in murine submandibular gland in vitro[J]. Dev Biol, 2011,352(2):299-307.
doi: 10.1016/j.ydbio.2011.01.030 pmid: 21295561
[17] Wong DT . Salivary extracellular noncoding RNA: emerging biomarkers for molecular diagnostics[J]. Clin Ther, 2015,37(3):540-551.
doi: 10.1016/j.clinthera.2015.02.017 pmid: 25795433
[18] Shi H, Cao N, Pu Y , et al. Long non-coding RNA expression profile in minor salivary gland of primary Sjögren’s syndrome[J]. Arthritis Res Ther, 2016,18(1):109.
doi: 10.1186/s13075-016-1005-2 pmid: 4869341
[19] Kwon HR, Larsen M . The contribution of specific cell subpopulations to submandibular salivary gland branching morphogenesis[J]. Curr Opin Genet Dev, 2015,32:47-54.
doi: 10.1016/j.gde.2015.01.007 pmid: 25706196
[20] Rugel-Stahl A, Elliott ME, Ovitt CE . Ascl3 marks adult progenitor cells of the mouse salivary gland[J]. Stem Cell Res, 2012,8(3):379-387.
doi: 10.1016/j.scr.2012.01.002 pmid: 22370009
[21] Nelson DA, Manhardt C, Kamath V , et al. Quan-titative single cell analysis of cell population dynamics during submandibular salivary gland development and differentiation[J]. Biol Open, 2013,2(5):439-447.
doi: 10.1242/bio.20134309 pmid: 3654261
[22] Lombaert IM, Abrams SR, Li L , et al. Combined KIT and FGFR2b signaling regulates epithelial progenitor expansion during organogenesis[J]. Stem Cell Reports, 2013,1(6):604-619.
doi: 10.1016/j.stemcr.2013.10.013 pmid: 24371813
[23] Ray S, Yuan D, Dhulekar N , et al. Cell-based multi-parametric model of cleft progression during sub-mandibular salivary gland branching morphogenesis[J]. PLoS Comput Biol, 2013,9(11):e1003319.
doi: 10.1371/journal.pcbi.1003319 pmid: 24277996
[24] Ogawa M, Oshima M, Imamura A , et al. Functional salivary gland regeneration by transplantation of a bioengineered organ germ[J]. Nat Commun, 2013,4:2498.
doi: 10.1038/ncomms3498 pmid: 24084982
[25] Racz GZ, Zheng C, Goldsmith CM , et al. Toward gene therapy for growth hormone deficiency via salivary gland expression of growth hormone[J]. Oral Dis, 2015,21(2):149-155.
doi: 10.1111/odi.12217 pmid: 24320050
[1] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[2] 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67.
[3] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[4] 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355.
[5] 艾晓青,窦磊,乔新,杨德琴. 三维培养牙髓间充质细胞外泌体微小RNA表达谱分析[J]. 国际口腔医学杂志, 2022, 49(1): 27-36.
[6] 沈洁,何地,刘雁鸣. 下颌下腺良性肿瘤功能性手术的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 230-237.
[7] 孙坚炜,雷利红,谭静怡,陈莉丽. 微小RNA 155对骨免疫的调控及其在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 607-615.
[8] 周婕妤,刘琳,吴亚菲,赵蕾. 微小RNA介导的牙周炎与动脉粥样硬化相关机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 76-83.
[9] 张晓敏,高莺. 残余颌下腺Wharton导管内涎石复发的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 604-608.
[10] 冯顶丽,卓丽丹,芦笛,郭红延. 微小RNA调节间充质干细胞软骨分化机制的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 640-645.
[11] 方川,李雅冬. 微小RNA在口腔鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 646-651.
[12] 郝奕霖, 房付春, 吴补领. 微小RNA在人牙周膜来源细胞成骨分化中的作用[J]. 国际口腔医学杂志, 2018, 45(1): 46-49.
[13] 刘润恒,刘于冬,陈卓凡. 微小RNA在骨分化过程中的作用机制[J]. 国际口腔医学杂志, 2017, 44(1): 108-113.
[14] 耿奉雪,潘亚萍. 微小RNA-203的生物学功能及其在口腔疾病中的作用[J]. 国际口腔医学杂志, 2016, 43(6): 685-689.
[15] 李龙,黄洪章. 微小RNA-205在肿瘤化学治疗耐药中的作用和机制[J]. 国际口腔医学杂志, 2016, 43(6): 734-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .