国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (6): 640-645.doi: 10.7518/gjkq.2018.06.004

• RNA专栏 • 上一篇    下一篇

微小RNA调节间充质干细胞软骨分化机制的研究进展

冯顶丽1,2,卓丽丹2,芦笛3,郭红延2()   

  1. 1. 山西医科大学口腔医学院·口腔医院 太原 030001;
    2. 北京武警总医院口腔综合科 北京 100039
    3. 中国人民解放军总医院整形修复科 北京 100853
  • 收稿日期:2017-12-05 修回日期:2018-06-06 出版日期:2018-11-01 发布日期:2018-11-15
  • 通讯作者: 郭红延
  • 作者简介:冯顶丽,硕士,Email: 18234085075@163.com
  • 基金资助:
    国家自然科学基金(81571619);国家重点研发计划(2016YFE0204400)

Mechanism of microRNA modulation of cartilage differentiation in mesenchymal stem cells

Dingli Feng1,2,Lidan Zhuo2,Di Lu3,Hongyan Guo2()   

  1. 1. School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
    2. Dept. of Oral Medicine, Beijing Armed Police General Hospital, Beijing 100039, China
    3. Dept. of Orthopedics and Rehabilitation, General Hospital of PLA, Beijing 100853, China
  • Received:2017-12-05 Revised:2018-06-06 Online:2018-11-01 Published:2018-11-15
  • Contact: Hongyan Guo
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81571619);National Key Research and Development Plan(2016YFE0204400)

摘要:

微小RNA(miRNA)主要通过不完全的碱基配对,在转录后水平调控基因的表达。在间充质干细胞软骨向分化过程中,有许多不同miRNA的表达,其对软骨分化起着重要的调节作用。近年来,miRNA具有成为软骨疾病治疗靶点的可能性,促进了研究人员强有力的调查,以求深入地了解miRNA在软骨发育中的作用机制。本文结合相关文献,对间充质干细胞软骨向分化过程中miRNA的表达及某些miRNA在调控软骨分化过程中的具体作用途径进行综述。

关键词: 微小RNA, 间充质干细胞, 软骨分化, 靶基因

Abstract:

microRNAs (miRNAs) regulate gene expression at the post-transcriptional level mainly through incomplete base-pairing. There are many different miRNA expressions in mesenchymal stem cells during the process of differentiation, and such expressions play an important role in the regulation of cartilage differentiation. In recent years, the possibility of miRNA becoming a target for the treatment of cartilage diseases has prompted researchers to investigate the role of miRNAs in the development of cartilage. In this paper, we review the expression of miRNAs during differentiation of mesenchymal stem cell cartilage and the specific roles of miRNAs in the process of cartilage differentiation.

Key words: microRNA, mesenchymal stem cell, cartilage differentiation, target gene

中图分类号: 

  • Q254
[1] Gobbi A, Karnatzikos G, Sankineani SR . One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee[J]. Am J Sports Med, 2014,42(3):648-657.
doi: 10.1177/0363546513518007 pmid: 24458240
[2] Bernhard JC, Vunjak-Novakovic G . Should we use cells, biomaterials, or tissue engineering for cartilage regeneration[J]. Stem Cell Res Ther, 2016,7:56.
doi: 10.1186/s13287-016-0314-3 pmid: 4836146
[3] Ham O, Lee CY, Kim R , et al. Therapeutic potential of differentiated mesenchymal stem cells for treat-ment of osteoarthritis[J]. Int J Mol Sci, 2015,16(7):14961-14978.
doi: 10.3390/ijms160714961 pmid: 4519882
[4] Carthew RW, Sontheimer EJ . Origins and Mechanisms of miRNAs and siRNAs[J]. Cell, 2009,136(4):642-655.
doi: 10.1016/j.cell.2009.01.035 pmid: 2675692
[5] Yang B, Guo HF, Zhang YL , et al. The microRNA expression profiles of mouse mesenchymal stem cell during chondrogenic differentiation[J]. BMB Rep, 2011,44(1):28-33.
doi: 10.5483/BMBRep.2011.44.1.28 pmid: 21266103
[6] Zhang Z, Kang Y, Zhang Z , et al. Expression of microRNAs during chondrogenesis of human adi-pose-derived stem cells[J]. Osteoarthr Cartil, 2012,20(12):1638-1646.
doi: 10.1016/j.joca.2012.08.024 pmid: 22947280
[7] Yang Z, Hao J, Hu ZM . MicroRNA expression pro-files in human adipose-derived stem cells during chondrogenic differentiation[J]. Int J Mol Med, 2015,35(3):579-586.
doi: 10.3892/ijmm.2014.2051 pmid: 25543998
[8] Akiyama H . Control of chondrogenesis by the trans-cription factor Sox9[J]. Mod Rheumatol, 2008,18(3):213-219.
doi: 10.3109/s10165-008-0048-x pmid: 18351289
[9] Han Y, Lefebvre V . L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer[J]. Mol Cell Biol, 2008,28(16):4999-5013.
doi: 10.1128/MCB.00695-08
[10] Yang B, Guo HF, Zhang YL , et al. MicroRNA-145 regulates chondrogenic differentiation of mesenchy-mal stem cells by targeting Sox9[J]. PLoS One, 2011,6(7):e21679.
doi: 10.1371/journal.pone.0021679 pmid: 21799743
[11] Martinez-Sanchez A, Dudek KA, Murphy CL . Re-gulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145)[J]. J Biol Chem, 2012,287(2):916-924.
doi: 10.1074/jbc.M111.302430 pmid: 22102413
[12] Lee S, Yoon DS, Paik S , et al. Microrna-495 inhibits chondrogenic differentiation in human mesenchymal stem cells by targeting Sox9[J]. Stem Cells Dev, 2014,23(15):1798-1808.
doi: 10.1089/scd.2013.0609 pmid: 24654627
[13] Lin X, Wu L, Zhang ZM , et al. MiR-335-5p promotes chondrogenesis in mouse mesenchymal stem cells and is regulated through two positive feedback loops[J]. J Bone Miner Res, 2014,29(7):1575-1585.
doi: 10.1002/jbmr.2163 pmid: 24347469
[14] Guérit D, Philipot D, Chuchana P , et al. Sox9-regula-ted miRNA-574-3p inhibits chondrogenic differen-tiation of mesenchymal stem cells[J]. PLoS One, 2013,8(4):e62582.
doi: 10.1371/journal.pone.0062582 pmid: 23626837
[15] Dudek KA, Lafont JE, Martinez-Sanchez A , et al. TypeⅡcollagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes[J]. J Biol Chem, 2010,285(32):24381-24387.
doi: 10.1074/jbc.M110.111328 pmid: 2915673
[16] Xu J, Kang Y, Liao WM , et al. MiR-194 regulates chondrogenic differentiation of human adipose-de-rived stem cells by targeting Sox5[J]. PLoS One, 2012,7(3):e31861.
doi: 10.1371/journal.pone.0031861
[17] Parvizi J, Zmistowski B, Berbari EF , et al. New de-finition for periprosthetic joint infection: from the workgroup of the Musculoskeletal Infection Society[J]. Clin Orthop Relat Res, 2011,469(11):2992-2994.
doi: 10.1007/s11999-011-2102-9
[18] Buechli ME, Lamarre J, Koch TG . MicroRNA-140 expression during chondrogenic differentiation of equine cord blood-derived mesenchymal stromal cells[J]. Stem Cells Dev, 2013,22(8):1288-1296.
doi: 10.1089/scd.2012.0411 pmid: 23157248
[19] Miyaki S, Nakasa T, Otsuki S , et al. MicroRNA-140 is expressed in differentiated human articular chon-drocytes and modulates interleukin-1 responses[J]. Arthritis Rheum, 2009,60(9):2723-2730.
doi: 10.1002/art.24745 pmid: 2806094
[20] Nicolas FE, Pais H, Schwach F , et al. Mrna expres-sion profiling reveals conserved and non-conserved miR-140 targets[J]. RNA Biol, 2011,8(4):607-615.
doi: 10.4161/rna.8.4.15390 pmid: 21720209
[21] Zhou XZ, Wang J, Sun HT , et al. MicroRNA-99a regulates early chondrogenic differentiation of rat mesenchymal stem cells by targeting the BMPR2 gene[J]. Cell Tissue Res, 2016,366(1):143-153.
doi: 10.1007/s00441-016-2416-8 pmid: 27177866
[22] Lorda-Diez CI, Montero JA, Diaz-Mendoza MJ , et al. Defining the earliest transcriptional steps of chondrogenic progenitor specification during the formation of the digits in the embryonic limb[J]. PLoS One, 2011,6(9):e24546.
doi: 10.1371/journal.pone.0024546 pmid: 3172225
[23] Hou CH, Yang ZB, Kang Y , et al. MiR-193b regula-tes early chondrogenesis by inhibiting the TGF-beta2 signaling pathway[J]. FEBS Lett, 2015,589(9):1040-1047.
doi: 10.1016/j.febslet.2015.02.017 pmid: 25728278
[24] Lin E, Kong L, Bai XH , et al. Mir-199a, a bone mor-phogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1[J]. J Biol Chem, 2009,284(17):11326-11335.
doi: 10.1074/jbc.M807709200 pmid: 2670138
[25] Pais H, Nicolas FE, Soond SM , et al. Analyzing mRNA expression identifies Smad3 as a microRNA-target regulated only at protein level[J]. RNA, 2010,16(3):489-494.
doi: 10.1261/rna.1701210 pmid: 20071455
[26] Anderson BA , McAlinden A. Mir-483 targets SMAD4 to suppress chondrogenic differentiation of human mesenchymal stem cells[J]. J Orthop Res, 2017,35(11):2369-2377.
doi: 10.1002/jor.23552 pmid: 28244607
[27] Tian Y, Guo R, Shi B , et al. MicroRNA-30a pro-motes chondrogenic differentiation of mesenchymal stem cells through inhibiting Delta-like 4 expression[J]. Life Sci, 2016,148:220-228.
doi: 10.1016/j.lfs.2016.02.031
[28] Zhang YJ, Huang XH, Yuan YH . MicroRNA-410 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells through down-regulating Wnt3a[J]. Am J Transl Res, 2017,9(1):136-145.
pmid: 28123640
[29] Nah GS, Lim ZW, Tay BH , et al. Runx family genes in a cartilaginous fish, the elephant shark (Callor-hinchus milii)[J]. PLoS One, 2014,9(4):e93816.
doi: 10.1371/journal.pone.0093816 pmid: 24699678
[30] Zhang ZQ, Hou CH, Meng FG , et al. MiR-455-3p regulates early chondrogenic differentiation via inhi-biting Runx2[J]. FEBS Lett, 2015,589(23):3671-3678.
doi: 10.1016/j.febslet.2015.09.032 pmid: 26474644
[31] Ham O, Song B, Lee SY , et al. The role of micro-RNA-23b in the differentiation of MSC into chon-drocyte by targeting protein kinase A signaling[J]. Biomaterials, 2012,33(18):4500-4507.
doi: 10.1016/j.biomaterials.2012.03.025 pmid: 22449550
[32] Tuddenham L, Wheeler G, Ntounia-Fousara S , et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells[J]. FEBS Lett, 2006,580(17):4214-4217.
doi: 10.1016/j.febslet.2006.06.080 pmid: 16828749
[1] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[2] 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67.
[3] 李佩桐,时彬冕,许春梅,谢旭东,王骏. Gli1阳性间充质干细胞在牙及牙周组织中的分布及作用[J]. 国际口腔医学杂志, 2023, 50(1): 37-42.
[4] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[5] 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355.
[6] 艾晓青,窦磊,乔新,杨德琴. 三维培养牙髓间充质细胞外泌体微小RNA表达谱分析[J]. 国际口腔医学杂志, 2022, 49(1): 27-36.
[7] 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695.
[8] 邓诗勇,宫苹,谭震. 脑和肌肉芳香烃受体核转运样蛋白1基因调控口腔及全身骨代谢的作用[J]. 国际口腔医学杂志, 2021, 48(2): 198-204.
[9] 陈野, 周丰, 邬琼辉, 车会凌, 李佳璇, 申佳琪, 罗恩. 脂联素对骨髓间充质干细胞的作用及其调控机制[J]. 国际口腔医学杂志, 2021, 48(1): 58-63.
[10] 吕辉,王华,孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661-668.
[11] 孙坚炜,雷利红,谭静怡,陈莉丽. 微小RNA 155对骨免疫的调控及其在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 607-615.
[12] 杨叶青,陈明,吴补领. 环状非编码RNA在间充质干细胞成骨向分化中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 257-262.
[13] 刘俊圻,陈艺尹,杨文宾. RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 263-269.
[14] 朱明静,张清彬. 生长因子诱导间充质干细胞三维体外软骨形成的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 270-277.
[15] 吴晓楠,马宁,侯建霞. 不同干细胞来源外泌体在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 146-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .