国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (3): 272-275.doi: 10.7518/gjkq.2018.03.005

• 干细胞专栏 • 上一篇    下一篇

RNA腺嘌呤6-甲基化修饰调控干细胞分化的研究进展

武云舒, 袁泉   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院种植科 成都 610041
  • 收稿日期:2017-10-14 修回日期:2018-01-08 发布日期:2018-05-08
  • 通讯作者: 袁泉,教授,博士,Email:yuanquan@scu.edu.cn
  • 作者简介:武云舒,硕士,Email:sophiawu0624@163.com
  • 基金资助:
    国家自然科学基金(81722014);四川省科技创新团队项目(2017TD0016)

Regulation of RNA N6-methylation of adenosine on stem cell differentiation

Wu Yunshu, Yuan Quan   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-10-14 Revised:2018-01-08 Published:2018-05-08
  • Supported by:
    This study was supported by National Natural Science Foundation of China (81722014) and Sichuan Province Science and Technology Innovation Team Program (2017TD0016) .

摘要: 腺嘌呤甲基化形成6-甲基腺嘌呤(m6A)是真核生物中最为常见的一种RNA转录后修饰,参与众多基因的表达及细胞活动中复杂而精细的生物学调控。腺嘌呤的6-甲基化是一种动态可逆性过程,甲基转移酶Mettl3、Mettl14和Wtap催化m6A的生成,而去甲基化酶FTO和ALKBH5可以催化m6A去除甲基。近年来的研究发现,甲基转移酶和去甲基化酶可以通过在RNA上“书写”或“擦除”m6A标记来调控干细胞的多能性和分化,为RNA表观遗传学调控干细胞命运提供了新的研究角度。

关键词: 6-甲基腺嘌呤, 甲基转移酶, 去甲基化酶, 干细胞分化, 多能性

Abstract: N6-methylation of adenosine is the most prevalent post-transcriptional RNA modification in eukaryotes. Mettl3, Mettl14 and Wtap are methyltransferases that catalyse the formation of N6-methyladenosine (m6A). Demethylase, FTO and ALKBH5 can remove the methyl of m6A, thereby rendering a dynamic and reversible m6A modification. Methyltransferases and demethylases can regulate the pluripotency and differentiation of stem cells through writing and erasure of m6A marks on RNA. These data provide a novel dimension in epigenetic regulation at the RNA level to affect stem cell fate.

Key words: N6-methyladenosine, methyltransferase, demethylase, stem cell differentiation, pluripotency

中图分类号: 

  • Q753
[1] Meyer KD, Saletore Y, Zumbo P, et al.Comprehen-sive analysis of mRNA methylation reveals enrichment in 3’UTRs and near stop codons[J]. Cell, 2012, 149(7):1635-1646.
[2] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al.Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397):201-206.
[3] Zheng G, Dahl JA, Niu Y, et al.ALKBH5 is a mam-malian RNA demethylase that impacts RNA metabo-lism and mouse fertility[J]. Mol Cell, 2013, 49(1):18-29.
[4] Schwartz S, Mumbach MR, Jovanovic M, et al.Per-turbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites[J]. Cell Rep, 2014, 8(1):284-296.
[5] Wang X, Lu Z, Gomez A, et al.N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481):117-120.
[6] Liu N, Dai Q, Zheng G, et al.N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015, 518(7540):560-564.
[7] Roost C, Lynch SR, Batista PJ, et al.Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification[J]. J Am Chem Soc, 2015, 137(5):2107-2115.
[8] Liu J, Yue Y, Han D, et al.A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10(2):93-95.
[9] Wang Y, Li Y, Toth JI, et al.N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells[J]. Nat Cell Biol, 2014, 16(2):191-198.
[10] Agarwala SD, Blitzblau HG, Hochwagen A, et al.RNA methylation by the MIS complex regulates a cell fate decision in yeast[J]. PLoS Genet, 2012, 8(6):e1002732.
[11] Bodi Z, Zhong S, Mehra S, et al.Adenosine methy-lation in arabidopsis mRNA is associated with the 3’ end and reduced levels cause developmental defects[J]. Front Plant Sci, 2012, 3:48.
[12] Batista P, Molinie B, Wang J, et al.m6A RNA modi-fication controls cell fate transition in mammalian embryonic stem cells[J]. Cell Stem Cell, 2014, 15(6):707-719.
[13] Aguilo F, Zhang F, Sancho A, et al.Coordination of m6A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming[J]. Cell Stem Cell, 2015, 17(6):689-704.
[14] Chen T, Hao YJ, Zhang Y, et al.m6A RNA methyla-tion is regulated by microRNAs and promotes repro-gramming to pluripotency[J]. Cell Stem Cell, 2015, 16(3):289-301.
[15] Geula S, Moshitch-Moshkovitz S, Dominissini D, et al.Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentia-tion[J]. Science, 2015, 347(6225):1002-1006.
[16] Ping XL, Sun BF, Wang L, et al.Mammalian WTAP is a regulatory subunit of the RNA N6-methyladeno-sine methyltransferase[J]. Cell Res, 2014, 24(2):177-189.
[17] Fukusumi Y, Naruse C, Asano M.Wtap is required for differentiation of endoderm and mesoderm in the mouse embryo[J]. Dev Dyn, 2008, 237(3):618-629.
[18] Dina C, Meyre D, Gallina S, et al.Variation in FTO contributes to childhood obesity and severe adult obesity[J]. Nat Genet, 2007, 39(6):724-726.
[19] Keller L, Xu W, Wang HX, et al.The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer’s disease risk: a prospective cohort study[J]. J Alzheimers Dis, 2011, 23(3):461-469.
[20] Hess ME, Brüning JC.The fat mass and obesity-associated (FTO) gene: obesity and beyond[J]. Biochim Biophys Acta, 2014, 1842(10):2039-2047.
[21] Loos RJ, Yeo GS.The bigger picture of FTO: the first GWAS-identified obesity gene[J]. Nat Rev En-docrinol, 2014, 10(1):51-61.
[22] Jia G, Fu Y, Zhao X, et al.N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12):885-887.
[23] McMurray F, Church CD, Larder R, et al. Adult onset global loss of the fto gene alters body com-position and metabolism in the mouse[J]. PLoS Genet, 2013, 9(1):e1003166.
[24] Zhao X, Yang Y, Sun BF, et al.FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J]. Cell Res, 2014, 24(12):1403-1419.
[25] Zhang M, Zhang Y, Ma J, et al.The demethylase activity of FTO (fat mass and obesity associated protein) is required for preadipocyte differentiation[J]. PLoS One, 2015, 10(7):e0133788.
[26] Thalhammer A, Bencokova Z, Poole R, et al.Human AlkB homologue 5 is a nuclear 2-oxoglutarate de-pendent oxygenase and a direct target of hypoxia-inducible factor 1α (HIF-1α)[J]. PLoS One, 2011, 6(1):e16210.
[1] 刘俊圻,陈艺尹,杨文宾. RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 263-269.
[2] 邱静怡,万凌云,赵志河,李娟. 内外源性应力对间质干细胞成软骨分化的调控[J]. 国际口腔医学杂志, 2016, 43(4): 449-455.
[3] 彭正军 刘路 凌均棨. 细胞重编程及其影响因素[J]. 国际口腔医学杂志, 2014, 41(3): 300-303.
[4] 张弘1综述 张志光2审校. 血管周细胞的研究进展[J]. 国际口腔医学杂志, 2013, 40(4): 529-532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .