国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (2): 170-176.doi: 10.7518/gjkq.2018.02.009

• 论著 • 上一篇    下一篇

成骨细胞条件性FoxOem>1基因敲除糖尿病小鼠模型的建立

熊毅, 宫苹, 伍颖颖   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心
    四川大学华西口腔医院种植科 成都 610041
  • 收稿日期:2017-09-15 修回日期:2017-12-20 出版日期:2018-03-01 发布日期:2018-03-01
  • 通讯作者: 伍颖颖,副教授,博士,Email:yywdentist@163.com
  • 作者简介:熊毅,硕士,Email:xiongraise@163.com
  • 基金资助:
    国家自然科学基金(81400543,81571008); 四川大学优秀青年学者科研基金(A类)(2017SCU04A21)

Establishment of diabetic mouse model with conditional knockout of FoxO1 in osteoblasts

Xiong Yi, Gong Ping, Wu Yingying   

  1. State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases &Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-09-15 Revised:2017-12-20 Online:2018-03-01 Published:2018-03-01
  • Supported by:
    This study was supported by National Natural Science Foundation of China (81400543, 81571008) and Outstanding Scholars Research Funding of Sichuan University (2017SCU04A21).

摘要: 目的 建立成骨细胞条件性FoxO1基因敲除的糖尿病小鼠模型,并进行初步的表型研究。方法 设计基因敲除策略,获得野生型和纯合小鼠。提取鼠尾组织DNA,经聚合酶链式反应(PCR)扩增后鉴定其基因型。分别提取小鼠原代成骨细胞mRNA和蛋白质,以及其他组织的mRNA,利用实时荧光定量聚合酶链式反应(RT-PCR)和Western blot技术检验FoxO1的表达。在不同时间点监测小鼠体重、血糖,并进行胰岛素耐受实验。结果 成功建立FoxO1基因敲除小鼠模型并诱发糖尿病,糖尿病小鼠从第2周开始体重明显低于正常小鼠。在糖尿病条件下,纯合小鼠血糖值明显低于野生型小鼠,其胰岛素敏感性明显高于野生型小鼠。结论 成功建立了成骨细胞条件性FoxO1基因敲除小鼠模型;FoxO1基因敲除可改善糖尿病小鼠的高糖血症,可能是由于FoxO1基因敲除增加了糖尿病小鼠的胰岛素敏感性。

关键词: 叉头转录因子, 条件性基因敲除, 糖尿病

Abstract: Objective This study aims to establish a diabetic mouse model with conditional knockout of FoxO1 in osteoblasts and preliminary explore the phenotypes.Methods Wild type (WT) and gene knockout mice were obtained according to the designed reproductive strategy. DNA was extracted from mouse tail and amplified by real-time polymerase chain reaction (RT-PCR). The mice phenotypes were also detected. The mRNA and protein levels of FoxO1 in osteoblasts and other tissues were obtained and detected by RT-PCR and Western blot analysis. Mice weight and fasting blood glucose were measured. Insulin tolerance test (ITT) was conducted to assess the role of FoxO1 in glucose metabolism. Results Diabetic mouse models with conditional knockout of FoxO1 in osteoblasts were successfully established. The body weight of diabetic mice was significantly lower than that of normal mice at 2 weeks. The fasting blood glucose in diabetic gene knockout mice was lower than that in diabetic WT mice. In addition, ITT showed that FoxO1 knockout promoted insulin sensitivity in diabetic gene knockout mice compared with that in diabetic WT mice.Conclusion Diabetic mouse model with conditional knockout of FoxO1 in osteoblasts was successfully established. FoxO1 knockout ameliorated hyperglycaemia, which may be accounted for the increased insulin sensitivity in diabetic gene knockout mice.

Key words: forkhead box protein O, conditional knock-out, diabetes mellitus

中图分类号: 

  • R78
[1] Chen S, Villalta SA, Agrawal DK.FOXO1 mediates vitamin D deficiency-induced insulin resistance in skeletal muscle[J]. J Bone Miner Res, 2016, 31(3): 585-595.
[2] Xiong Y, Zhang Y, Xin N, et al.1α,25-Dihydroxyvi-tamin D3 promotes bone formation by promoting nuclear exclusion of the FoxO1 transcription factor in diabetic mice[J]. J Biol Chem, 2017, 292(49): 20270-20280.
[3] Webb AE, Brunet A.FOXO transcription factors: key regulators of cellular quality control[J]. Trends Biochem Sci, 2014, 39(4):159-169.
[4] Sin TK, Yung BY, Siu PM.Modulation of SIRT1-Foxo1 signaling axis by resveratrol: implications in skeletal muscle aging and insulin resistance[J]. Cell Physiol Biochem, 2015, 35(2):541-552.
[5] Osyczka AM, Diefenderfer DL, Bhargave G, et al.Different effects of BMP-2 on marrow stromal cells from human and rat bone[J]. Cells Tissues Organs (Print), 2004, 176(1/2/3):109-119.
[6] Hatta M, Daitoku H, Matsuzaki H, et al.Regulation of alkaline phosphatase promoter activity by fork-head transcription factor FKHR[J]. Int J Mol Med, 2002, 9(2):147-152.
[7] Rached MT, Kode A, Xu L, et al.FoxO1 is a posi-tive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteo-blasts[J]. Cell Metab, 2010, 11(2):147-160.
[8] Iyer S, Han L, Ambrogini E, et al.Deletion of FoxO1, 3, and 4 in osteoblast progenitors attenuates the loss of cancellous bone mass in a mouse model of type 1 diabetes[J]. J Bone Miner Res, 2017, 32(1): 60-69.
[9] Storz P.Forkhead homeobox type O transcription factors in the responses to oxidative stress[J]. Antio-xid Redox Signal, 2011, 14(4):593-605.
[10] Zhen D, Chen Y, Tang X.Metformin reverses the deleterious effects of high glucose on osteoblast function[J]. J Diabetes Complicat, 2010, 24(5):334-344.
[11] Furman BL. Streptozotocin-induced diabetic models in mice and rats[J]. Curr Protoc Pharmacol, 2015, 70:5.47.1-20.
[12] Liu Z, Zhou W, Tangl S, et al.Potential mechanism for osseointegration of dental implants in Zucker diabetic fatty rats[J]. Br J Oral Maxillofac Surg, 2015, 53(8):748-753.
[13] Chrcanovic BR, Albrektsson T, Wennerberg A.Diabetes and oral implant failure: a systematic review[J]. J Dent Res, 2014, 93(9):859-867.
[14] Ferron M, Wei J, Yoshizawa T, et al.Insulin signa-ling in osteoblasts integrates bone remodeling and energy metabolism[J]. Cell, 2010, 142(2):296-308.
[15] Bartell SM, Kim HN, Ambrogini E, et al.FoxO pro-teins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation[J]. Nat Commun, 2014, 5:3773.
[16] Fulzele K, Riddle RC, DiGirolamo DJ, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition[J]. Cell, 2010, 142(2):309-319.
[17] Rached MT, Kode A, Silva BC, et al.FoxO1 ex-pression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice[J]. J Clin Invest, 2010, 120(1):357-368.
[1] 易祖木,王昕宇,伍颖颖. 糖尿病患者口腔细菌多样性的变化[J]. 国际口腔医学杂志, 2020, 47(5): 522-529.
[2] 赵鹏飞,王琪. 伴糖尿病患者种植骨缺损的病因及治疗的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 244-248.
[3] 李维,农晓琳. 糖尿病对唾液分泌和唾液腺的影响及其机制[J]. 国际口腔医学杂志, 2018, 45(5): 579-583.
[4] 刘彩云, 陶怡然. 糖尿病与味觉损害的关系[J]. 国际口腔医学杂志, 2018, 45(3): 358-361.
[5] 衣晓伟, 黄定明, 张岚. 糖尿病患者牙髓根尖周病的发病机制及临床管理[J]. 国际口腔医学杂志, 2018, 45(2): 214-218.
[6] 张鹏, 丁一, 王琪. 炎性衰老在糖尿病牙周炎中的作用机制及研究现状[J]. 国际口腔医学杂志, 2017, 44(6): 664-668.
[7] 杜书芳, 唐华. 糖尿病患者种植义齿临床预后评估体系的建立及相关护理[J]. 国际口腔医学杂志, 2017, 44(5): 555-558.
[8] 伍颖颖,宫苹. 胰岛素对糖尿病大鼠种植体周骨组织代谢影响的研究[J]. 国际口腔医学杂志, 2017, 44(2): 183-188.
[9] 黄艳丽,郭维华,田卫东. 糖尿病前期和牙周炎的相互关系[J]. 国际口腔医学杂志, 2016, 43(6): 706-710.
[10] 吴娟,姚敏,孙卫斌. 以龈沟血替代手指末梢血筛查糖尿病的研究进展[J]. 国际口腔医学杂志, 2016, 43(4): 486-489.
[11] 姜慧 黄萍. β-防御素-3及其与牙周炎和糖尿病的关系[J]. 国际口腔医学杂志, 2015, 42(3): 339-343.
[12] 刘曼1 孟耀2 吴敏1 叶丽荣1 张强1 王金东1. 牙周病与妊娠期糖尿病关系的临床研究[J]. 国际口腔医学杂志, 2015, 42(1): 19-21.
[13] 黄婧综述 梁景平审校. 糖尿病合并牙周病患者龈沟液的研究进展[J]. 国际口腔医学杂志, 2013, 40(4): 519-522.
[14] 刘彩云1 孙剑2 孟杨3 曾宪涛4 周静1 庞光明1. 牙周基础治疗对2 型糖尿病相关性牙周炎患者血糖控制的Meta 分析[J]. 国际口腔医学杂志, 2012, 39(2): 163-167.
[15] 刘曼综述 侯庆中审校. C-反应蛋白及其与2 型糖尿病和牙周炎间的相互关系[J]. 国际口腔医学杂志, 2012, 39(2): 221-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .

蜀ICP备09013973号-3
版权所有 © 《国际口腔医学杂志》编辑部
地址:四川成都人民南路三段14号 邮编:610041
电话:028-85502414 E-mail:gwyxkqyxfc@vip.163.com