国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (1): 112-118.doi: 10.7518/gjkq.2018.01.022

• 综述 • 上一篇    下一篇

种植体支抗稳定性的三维有限元分析

曾婷艳, 黄生高   

  1. 中南大学湘雅二医院口腔医学中心正畸科 长沙 410007
  • 收稿日期:2017-03-10 修回日期:2017-09-26 发布日期:2018-01-15
  • 通讯作者: 黄生高,副主任医师,博士,Email:huangsg1964@126.com
  • 作者简介:曾婷艳,医师,硕士,Email:zzty2011615@163.com
  • 基金资助:
    湖南省科学技术厅基金课题(2013FJ6024)

A three-dimensional finite element analysis for stability of mini-implant anchorage

Zeng Tingyan, Huang Shenggao   

  1. Dept. of Orthodontics, Stomatological Center, The Second Xiangya Hospital of Central South University, Changsha 410007, China
  • Received:2017-03-10 Revised:2017-09-26 Published:2018-01-15
  • Supported by:
    This study was supported by Program for Projecet of Fund of Science and Technology of Hunan Province (2013FJ6024).

摘要: 微种植体支抗技术是一种有效增强支抗的方法,其稳定性是获得可靠支抗的必要条件。三维有限元分析法是进行生物力学分析最有效的方法之一,可模拟复杂的口颌系统,被广泛应用于正畸领域。本文就三维有限元法分析微种植体支抗初期稳定性的微种植体因素、骨因素和操作因素等研究进展进行概述,以提高微种植体支抗的成功率。

关键词: 三维有限元分析, 种植体支抗, 稳定性

Abstract: Mini-implant anchorage for the orthodontic treatment is an effective method to reinforce anchorage. The stability is critical in the achievement of reliable anchorage. Three-dimensional finite element analysis is one of the most effective method to analyze biomechanics and simulate stomatognathic system, which has been widely used in orthodontic research. We summarized the current literature on the use of the three-dimensional finite element method in primary stability of mini-implant anchorage from aspects of mini-screw implants, bone and operation, in order to improve success of implant.

Key words: three-dimensional finite element analysis, mini-implant anchorage, stability

中图分类号: 

  • R783.5
[1]韩耀辉, 徐庚池, 牟兰, 等. 三维有限元分析在口腔正畸领域的研究进展[J]. 现代口腔医学杂志, 2015, 29(3):179-182. Han YH, Xu GC, Mou L, et al. Research progress in the field of orthodontics three-dimensional finite element analysis[J]. J Modern Stomatol, 2015, 29(3): 179-182.
[2]Zaparolli D, Peixoto RF, Pupim D, et al. Photoelastic analysis of mandibular full-arch implant-supported fixed dentures made with different bar materials and manufacturing techniques[J]. Mater Sci Eng C Mater Biol Appl, 2017, 81:144-147.
[3]Brozović J, Demoli N, Farkaš N, et al. Properties of axially loaded implant-abutment assemblies using di-gital holographic interferometry analysis[J]. Dent Mater, 2014, 30(3):e17-e27.
[4]Begonia M, Dallas M, Johnson ML, et al. Compa-rison of strain measurement in the mouse forearm using subject-specific finite element models, strain gaging, and digital image correlation[J]. Biomech Model Mechanobiol, 2017, 16(4):1243-1253.
[5]Chatzigianni A, Keilig L, Duschner H, et al. Com-parative analysis of numerical and experimental data of orthodontic mini-implants[J]. Eur J Orthod, 2011, 33(5):468-475.
[6]Thresher RW, Saito GE. The stress analysis of human teeth[J]. J Biomech, 1973, 6(5):443-449.
[7]Takahashi N, Kitagami T, Komori T. Behaviour of teeth under various loading conditions with finite element method[J]. J Oral Rehabil, 1980, 7(6):453- 461.
[8]Kanomi R. Mini-implant for orthodontic anchorage [J]. J Clin Orthod, 1997, 31(11):763-767.
[9]El-Beialy AR, Abou-El-Ezz AM, Attia KH, et al. Loss of anchorage of miniscrews: a 3-dimensional assessment[J]. Am J Orthod Dentofacial Orthop, 2009, 136(5):700-707.
[10]Ammar HH, Ngan P, Crout RJ, et al. Three-dimen-sional modeling and finite element analysis in treat-ment planning for orthodontic tooth movement[J]. Am J Orthod Dentofacial Orthop, 2011, 139(1):e59- e71.
[11]Gracco A, Cirignaco A, Cozzani M, et al. Numerical/experimental analysis of the stress field around mi-niscrews for orthodontic anchorage[J]. Eur J Orthod, 2009, 31(1):12-20.
[12]Schileo E, Taddei F, Cristofolini L, et al. Subject-specific finite element models implementing a maxi-mum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro [J]. J Biomech, 2008, 41(2):356-367.
[13]Albogha MH, Kitahara T, Todo M, et al. Maximum principal strain as a criterion for prediction of ortho-dontic mini-implants failure in subject-specific finite element models[J]. Angle Orthod, 2016, 86(1):24- 31.
[14]Rismanchian M, Birang R, Shahmoradi M, et al. Developing a new dental implant design and com-paring its biomechanical features with four designs [J]. Dent Res J (Isfahan), 2010, 7(2):70-75.
[15]Huang HL, Hsu JT, Fuh LJ, et al. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study[J]. J Dent, 2008, 36(6):409-417.
[16]Ajami S, Mina A, Nabavizadeh SA. Stress distri-butions of a bracket type orthodontic miniscrew and the surrounding bone under moment loadings: Three-dimensional finite element analysis[J]. J Ortho-dont Sci, 2016, 5(2):64-69.
[17]单丽华, 董福生, 宫伟伟, 等. 微型种植体长度对骨界面应力分布的影响[J]. 华西口腔医学杂志, 2011, 29(1):27-30. Shan LH, Dong FS, Gong WW, et al. The effect of mini-implant lengths on stress distributions in peri-implant surface[J]. West Chin J Stomatol, 2011, 29 (1):27-30.
[18]房伟. 正畸微种植体优化设计的三维有限元分析[D]. 西安: 第四军医大学, 2009. Fang W. Three-dimensional finite element analysis of biomechanical optimum design of orthodontic mini-implant[D]. Xi’an: Forth Military Medical Uni-versity, 2009.
[19]Lu Y, Chang S, Ye J, et al. Analysis on the stress of the bone surrounding mini-implant with different diameters and lengths under torque[J]. Biomed Mater Eng, 2015, 26(Suppl 1):S541-S545.
[20]Liu TC, Chang CH, Wong TY, et al. Finite element analysis of miniscrew implants used for orthodontic anchorage[J]. Am J Orthod Dentofacial Orthop, 2012, 141(4):468-476.
[21]Chang PK, Chen YC, Huang CC, et al. Distribution of micromotion in implants and alveolar bone with different thread profiles in immediate loading: a finite element study[J]. Int J Oral Maxillofac Im-plants, 2012, 27(6):e96-101.
[22]Ao J, Li T, Liu Y, et al. Optimal design of thread height and width on an immediately loaded cylinder implant: a finite element analysis[J]. Comput Biol Med, 2010, 40(8):681-686.
[23][23]王维丽, 马洁, 李鑫, 等. 反支撑形螺纹种植体即刻负载时应力分布的三维有限元分析[J]. 口腔颌面修复学杂志, 2016, 17(4):211-215. Wang WL, Ma J, Li X, et al. Analysis of the biome-chanics stress distribution of the reverse buttress thread implant under immediate loading: a three dimensional finite element study[J]. Chin J Prosthod, 2016, 17(4):211-215.
[24][24]Atieh MA, Shahmiri RA. Evaluation of optimal taper of immediately loaded wide-diameter implants: a finite element analysis[J]. J Oral Implantol, 2013, 39 (2):123-132.
[25]Fattahi H, Ajami S, Rafsanjani AN. The effects of different miniscrew thread designs and force direc-tions on stress distribution by 3-dimensional finite element analysis[J]. J Dent (Shiraz), 2015, 16(4): 341-348.
[26]Alrbata RH, Yu W, Kyung HM. Biomechanical effectiveness of cortical bone thickness on ortho-dontic microimplant stability: an evaluation based on the load share between cortical and cancellous bone [J]. Am J Orthod Dentofacial Orthop, 2014, 146(2): 175-182.
[27]Lin TS, Tsai FD, Chen CY, et al. Factorial analysis of variables affecting bone stress adjacent to the or-thodontic anchorage mini-implant with finite element analysis[J]. Am J Orthod Dentofacial Orthop, 2013, 143(2):182-189.
[28]Albogha MH, Kitahara T, Todo M, et al. Predis-posing factors for orthodontic mini-implant failure defined by bone strains in patient-specific finite element models[J]. Ann Biomed Eng, 2016, 44(10): 2948-2956.
[29]Lin CL, Wang JC, Ramp LC, et al. Biomechanical response of implant systems placed in the maxillary posterior region under various conditions of angula-tion, bone density, and loading[J]. Int J Oral Maxillo-fac Implants, 2008, 23(1):57-64.
[30]Motoyoshi M, Inaba M, Ono A, et al. The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in sur-rounding bone[J]. Int J Oral Maxillofac Surg, 2009, 38(1):13-18.
[31]Stahl E, Keilig L, Abdelgader I, et al. Numerical analyses of biomechanical behavior of various ortho-dontic anchorage implants[J]. J Orofac Orthop, 2009, 70(2):115-127.
[32]Suzuki A, Masuda T, Takahashi I, et al. Changes in stress distribution of orthodontic miniscrews and sur-rounding bone evaluated by 3-dimensional finite element analysis[J]. Am J Orthod Dentofacial Orthop, 2011, 140(6):e273-e280.
[33]Poorsattar Bejeh Mir A, Ravadgar M, Poorsattar Bejeh Mir M. Optimized orthodontic palatal mini-screw implant insertion angulation: a finite element analysis[J]. Int J Oral Maxillofac Implants, 2015, 30 (1):e1-e9.
[34]Kuroda S, Inoue M, Kyung HM, et al. Stress distri-bution in obliquely inserted orthodontic miniscrews evaluated by three-dimensional finite-element ana-lysis[J]. Int J Oral Maxillofac Implants, 2017, 32 (2):344-349.
[35]Choi SH, Kim SJ, Lee KJ, et al. Stress distributions in peri-miniscrew areas from cylindrical and tapered miniscrews inserted at different angles[J]. Korean J Orthod, 2016, 46(4):189-198.
[36]张扬, 张丹, 冯翠娟. 微小种植体正畸支抗生物力学的三维有限元分析[J]. 上海口腔医学, 2005, 14 (3):281-283. Zhang Y, Zhang D, Feng CJ. A three-dimensional finite element analysis for the biomechanical charac-teristics of orthodontic anchorage micro-implant[J].Shanghai J Stomatol, 2005, 14(3):281-283.
[37]Perillo L, Jamilian A, Shafieyoon A, et al. Finite element analysis of miniscrew placement in mandi-bular alveolar bone with varied angulations[J]. Eur J Orthod, 2015, 37(1):56-59.
[38]Lee J, Kim JY, Choi YJ, et al. Effects of placement angle and direction of orthopedic force application on the stability of orthodontic miniscrews[J]. Angle Orthod, 2013, 83(4):667-673.
[39]Woodall N, Tadepalli SC, Qian F, et al. Effect of miniscrew angulation on anchorage resistance[J]. Am J Orthod Dentofacial Orthop, 2011, 139(2):e147- e152.
[40]Zhao L, Xu Z, Wei X, et al. Effect of placement angle on the stability of loaded titanium microscrews: a microcomputed tomographic and biomechanical analysis[J]. Am J Orthod Dentofacial Orthop, 2011, 139(5):628-635.
[41]Miyamoto I, Tsuboi Y, Wada E, et al. Influence of cortical bone thickness and implant length on im-plant stability at the time of surgery—clinical, pro-spective, biomechanical, and imaging study[J]. Bone, 2005, 37(6):776-780.
[42]Frost HM. A brief review for orthopedic surgeons: fatigue damage (microdamage) in bone (its deter-minants and clinical implications)[J]. J Orthop Sci, 1998, 3(5):272-281.
[43]Motoyoshi M, Ueno S, Okazaki K, et al. Bone stress for a mini-implant close to the roots of adjacent teeth—3D finite element analysis[J]. Int J Oral Ma-xillofac Surg, 2009, 38(4):363-368.
[44]Shan LH, Guo N, Zhou GJ, et al. Finite element analysis of bone stress for miniscrew implant pro-ximal to root under occlusal force and implant loa-ding[J]. J Craniofac Surg, 2015, 26(7):2072-2076.
[45]Singh S, Mogra S, Shetty VS, et al. Three-dimensional finite element analysis of strength, stability, and stress distribution in orthodontic anchorage: a conical, self-drilling miniscrew implant system[J]. Am J Orthod Dentofacial Orthop, 2012, 141(3):327-336.
[46]Tepedino M, Masedu F, Chimenti C. Comparative evaluation of insertion torque and mechanical stabi-lity for self-tapping and self-drilling orthodontic miniscrews—an in vitro study[J]. Head Face Med, 2017, 13(1):10.
[47]Melo AC, Andrighetto AR, Hirt SD, et al. Risk factors associated with the failure of miniscrews—a ten-year cross sectional study[J]. Braz Oral Res, 2016, 30(1):e124.
[1] 徐书奎,张珊,谢新宇,马文盛. 上颌前方牵引矫治骨性Ⅲ类错畸形远期疗效稳定性的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 646-652.
[2] 张珊,葛晓磊,李杰,谢新宇,常维维,马文盛. 上颌前方牵引矫治对颌骨生长发育长期影响的Meta分析[J]. 国际口腔医学杂志, 2022, 49(5): 548-555.
[3] 杨赟琪,林阳阳,侯敏. 手术优先模式颌骨稳定性及影响因素研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 227-232.
[4] 刘玲,龚仁国,董秀华,刘入梦. 正畸联合双颌手术治疗前牙区严重骨性开长期稳定性的Meta分析[J]. 国际口腔医学杂志, 2021, 48(2): 173-179.
[5] 田青鹭,赵志河. 微型种植体在口腔正畸中稳定性的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 212-218.
[6] 陈昕,毛渤淳,鲁雨晴,董博,朱卓立,岳莉,于海洋. 钴铬合金和聚醚醚酮用于可摘局部义齿支架的三维有限元分析[J]. 国际口腔医学杂志, 2019, 46(5): 526-531.
[7] 关卿 金涛 顾永春 杨犇 倪龙兴. 3种根管预备器械在弯曲根管中扭转负载下的三维有限元分析[J]. 国际口腔医学杂志, 2015, 42(3): 269-272.
[8] 贺涵 贺红. 种植体支抗在正畸治疗中垂直向控制的应用进展[J]. 国际口腔医学杂志, 2013, 40(5): 648-652.
[9] 鲁颖娟 常少海. 微种植体初期稳定性的影响因素[J]. 国际口腔医学杂志, 2013, 40(3): 403-405.
[10] 王亚楠综述 杨四维审校. 微种植体支抗压低前牙的临床与基础研究[J]. 国际口腔医学杂志, 2013, 40(2): 221-223.
[11] 胡心怡综述 潘晓岗审校. 青春期早期唇腭裂继发上颌发育不足的治疗及其长期稳定性的临床研究进展[J]. 国际口腔医学杂志, 2011, 38(5): 584-588.
[12] 伍颖颖综述 宫苹审校. 种植体初期稳定性的研究现状与进展[J]. 国际口腔医学杂志, 2009, 36(6): 726-728.
[13] 刘智永综述 熊世江审校. 三维有限元分析法在根管治疗中的应用[J]. 国际口腔医学杂志, 2009, 36(5): 604-606.
[14] 史建陆,林艺翚. 微型种植体支抗及口外弓支抗矫治安氏Ⅱ类1 分类错牙合畸形的比较研究[J]. 国际口腔医学杂志, 2009, 36(1): 16-16~20.
[15] 吴佳培,赵志河. 远中移动磨牙技术的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .