国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (6): 674-678.doi: 10.7518/gjkq.2017.06.010

• 牙周专栏 • 上一篇    下一篇

齿垢密螺旋体糜蛋白酶样蛋白酶复合物及其致病作用

苗棣1,2, 吴亚菲3   

  1. 1.西安交通大学口腔医院陕西省颅颌面精准医学研究重点实验室 西安 710004;
    2.西安交通大学口腔医院牙周黏膜科 西安 710004;
    3.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院牙周病科 成都 610041
  • 收稿日期:2017-01-20 修回日期:2017-08-15 出版日期:2017-11-01 发布日期:2017-11-01
  • 通讯作者: 吴亚菲,教授,博士,Email:yfw1110@163.com
  • 作者简介:苗棣,主治医师,博士,Email:corchorus@hotmail.com
  • 基金资助:
    西安交通大学基本科研业务费自由探索类项目(xjj20130- 68)

Treponema denticola chymotrypsin-like protease complex and its pathogenic features

Miao Di1,2, Wu Yafei3   

  1. 1. Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, Stomatological Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
    2. Dept. of Periodontics and Mucosa Disease, Stomatological Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
    3. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-01-20 Revised:2017-08-15 Online:2017-11-01 Published:2017-11-01
  • Supported by:
    This study was supported by Fundamental Research Funds of Xi’an Jiaotong University for Free Exploration Pro-ject(xjj2013068).

摘要: 齿垢密螺旋体作为龈下菌斑红色复合体中的一员,与牙周炎症密切相关。其表面的糜蛋白酶样蛋白酶复合物(CTLP)是齿垢密螺旋体的一个重要的毒力因子。CTLP参与介导了齿垢密螺旋体的多种致病机制,包括对组织细胞和组织蛋白的黏附及侵入,与其他牙周致病菌协同形成致密生物膜,产生细胞毒作用,破坏上皮屏障、侵入深层牙周组织,降解组织蛋白,调节宿主源性蛋白酶的激活,引发宿主的免疫调控紊乱,具有多方面的致病作用。深入研究CTLP,有助于诠释口腔螺旋体的致病机制,丰富牙周病的病因及发病机制。

关键词: 牙周病, 齿垢密螺旋体, 糜蛋白酶样蛋白酶复合物

Abstract: Treponema denticola is closely associated with periodontal disease as a member of subgingival “red complex”.The surface protease chymotrypsin-like protease complex(CTLP) is an important virulent factor of T. denticola. CTLP plays significant roles in mediating pathogenesis of T. denticola, including adhesion and invasion to host cells and proteins, synergetic formation of biofilm with other periodontal pathogens, cytopathic effect, impairment and penetration of epithelial barrier, degradation of cell and tissue protein, modulation of host-derived proteinases and disruption of host immune regulation, and displaying multiple pathogenic features. Further study of CTLP will help to explain the pathogenesis of oral leptospira and to enrich the etiology and pathogenesis of periodontal diseases.

Key words: periodontal disease, Treponema denticola, chymotrypsin-like protease complex

中图分类号: 

  • Q51
[1] Chan EC, McLaughlin R. Taxonomy and virulence of oral spirochetes[J]. Oral Microbiol Immunol, 2000, 15(1):1-9.
[2] Visser MB, Ellen RP. New insights into the emer-ging role of oral spirochaetes in periodontal disease [J]. Clin Microbiol Infect, 2011, 17(4):502-512.
[3] Gatto MR, Montevecchi M, Paolucci M, et al. Pre-valence of six periodontal pathogens in subgingival samples of Italian patients with chronic periodon-titis[J]. New Microbiol, 2014, 37(4):517-524.
[4] Li Y, Feng X, Xu L, et al. Oral microbiome in Chinese patients with aggressive periodontitis and their family members[J]. J Clin Periodontol, 2015, 42(11):1015-1023.
[5] Kitti T, Supawadee J, Orawan C, et al. Porphyro - monas gingivalis , Aggregatibacter actinomyc e- temcomitans , and Treponema denticola / Prevotella intermedia co-infection are associated with severe periodontitis in a Thai population[J]. PLoS One, 2015, 10(8):e0136646.
[6] Hur Y, Choi SK, Ogata Y, et al. Microbiologic fin-dings in relation to risk assessment for periodontal disease: a cross-sectional study[J]. J Periodontol, 2016, 87(1):21-26.
[7] Byrne SJ, Dashper SG, Darby IB, et al. Progression of chronic periodontitis can be predicted by the le-vels of Porphyromonas gingivalis and Treponema denticola in subgingival plaque[J]. Oral Microbiol Immunol, 2009, 24(6):469-477.
[8] Lee SF, Andrian E, Rowland E, et al. Immune re-sponse and alveolar bone resorption in a mouse model of Treponema denticola infection[J]. Infect Immun, 2009, 77(2):694-698.
[9] Socransky SS, Haffajee AD, Cugini MA, et al. Microbial complexes in subgingival plaque[J]. J Clin Periodontol, 1998, 25(2):134-144.
[10] Dashper SG, Seers CA, Tan KH, et al. Virulence factors of the oral spirochete Treponema denticola [J]. J Dent Res, 2011, 90(6):691-703.
[11] Ishihara K. Virulence factors of Treponema denticola [J]. Periodontol 2000, 2010, 54(1):117-135.
[12] Grenier D, Uitto VJ, McBride BC. Cellular location of a Treponema denticola chymotrypsinlike protease and importance of the protease in migration through the basement membrane[J]. Infect Immun, 1990, 58 (2):347-351.
[13] Godovikova V, Wang HT, Goetting-Minesky MP, et al. Treponema denticola PrcB is required for ex-pression and activity of the PrcA-PrtP(dentilisin) complex[J]. J Bacteriol, 2010, 192(13):3337-3344.
[14] Godovikova V, Goetting-Minesky MP, Fenno JC. Composition and localization of Treponema den - ticola outer membrane complexes[J]. Infect Immun, 2011, 79(12):4868-4875.
[15] Uitto VJ, Grenier D, Chan EC, et al. Isolation of a chymotrypsinlike enzyme from Treponema denticola [J]. Infect Immun, 1988, 56(10):2717-2722.
[16] Keung Leung W, Haapasalo M, Uitto VJ, et al. The surface proteinase of Treponema denticola may me-diate attachment of the bacteria to epithelial cells[J]. Anaerobe, 1996, 2(1):39-46.
[17] Fenno JC, Hannam PM, Leung WK, et al. Cytopathic effects of the major surface protein and the chymo-trypsinlike protease of Treponema denticola [J]. Infect Immun, 1998, 66(5):1869-1877.
[18] Bamford CV, Fenno JC, Jenkinson HF, et al. The chymotrypsin-like protease complex of Treponema denticola ATCC 35405 mediates fibrinogen adhe-rence and degradation[J]. Infect Immun, 2007, 75(9): 4364-4372.
[19] Inagaki S, Kimizuka R, Kokubu E, et al. Treponema denticola invasion into human gingival epithelial cells[J]. Microb Pathog, 2016, 94:104-111.
[20] Hashimoto M, Ogawa S, Asai Y, et al. Binding of Porphyromonas gingivalis fimbriae to Treponema denticola dentilisin[J]. FEMS Microbiol Lett, 2003, 226(2):267-271.
[21] Tan KH, Seers CA, Dashper SG, et al. Porphyro-monas gingivalis and Treponema denticola exhibit metabolic symbioses[J]. PLoS Pathog, 2014, 10(3):e1003955.
[22] Cogoni V, Morgan-Smith A, Fenno JC, et al. Tre - ponema denticola chymotrypsin-like proteinase (CTLP) integrates spirochaetes within oral microbial communities[J]. Microbiology, 2012, 158(Pt 3):759- 770.
[23] Sano Y, Okamoto-Shibayama K, Tanaka K, et al. Dentilisin involvement in coaggregation between Treponema denticola and Tannerella forsythia [J]. Anaerobe, 2014, 30:45-50.
[24] Sarkar J, McHardy IH, Simanian EJ, et al. Trans-criptional responses of Treponema denticola to other oral bacterial species[J]. PLoS One, 2014, 9(2):e88361.
[25] Uitto VJ, Pan YM, Leung WK, et al. Cytopathic effects of Treponema denticola chymotrypsin-like proteinase on migrating and stratified epithelial cells[J]. Infect Immun, 1995, 63(9):3401-3410.
[26] Chi B, Qi M, Kuramitsu HK. Role of dentilisin in Treponema denticol a epithelial cell layer penetration [J]. Res Microbiol, 2003, 154(9):637-643.
[27] Ellen RP, Ko KS, Lo CM, et al. Insertional inactiva-tion of the prtP gene of Treponema denticola con-firms dentilisin’s disruption of epithelial junctions[J]. J Mol Microbiol Biotechnol, 2000, 2(4):581-586.
[28] Marttila E, Järvensivu A, Sorsa T, et al. Intracellular localization of Treponema denticola chymotrypsin-like proteinase in chronic periodontitis[J]. J Oral Microbiol, 2014, 6. doi:10.3402/jom.v6.24349.
[29] Mäkinen PL, Mäkinen KK, Syed SA. Role of the chymotrypsin-like membrane-associated proteinase from Treponema denticola ATCC 35405 in inactiva-tion of bioactive peptides[J]. Infect Immun, 1995, 63 (9):3567-3575.
[30] Rosen G, Sela MN, Bachrach G. The antibacterial activity of LL-37 against Treponema denticola is dentilisin protease independent and facilitated by the major outer sheath protein virulence factor[J]. Infect Immun, 2011, 80(3):1107-1114.
[31] Birkedal-Hansen H. Role of matrix metalloproteinases in human periodontal diseases[J]. J Periodontol, 1993, 64(5 Suppl):474-484.
[32] Kinane DF, Darby IB, Said S, et al. Changes in gingival crevicular fluid matrix metalloproteinase-8 levels during periodontal treatment and maintenance [J]. J Periodont Res, 2003, 38(4):400-404.
[33] Sorsa T, Ingman T, Suomalainen K, et al. Identifica-tion of proteases from periodontopathogenic bacteria as activators of latent human neutrophil and fibro-blast-type interstitial collagenases[J]. Infect Immun, 1992, 60(11):4491-4495.
[34] Miao D, Fenno JC, Timm JC, et al. The Treponema denticola chymotrypsin-like protease dentilisin in-duces matrix metalloproteinase-2-dependent fibro-nectin fragmentation in periodontal ligament cells[J]. Infect Immun, 2011, 79(2):806-811.
[35] Miao D, Godovikova V, Qian X, et al. Treponema denticola upregulates MMP-2 activation in periodon-tal ligament cells: interplay between epigenetics and periodontal infection[J]. Arch Oral Biol, 2014, 59 (10):1056-1064.
[36] Capone R, Wang HT, Ning Y, et al. Human serum antibodies recognize Treponema denticola Msp and PrtP protease complex proteins[J]. Oral Microbiol Immunol, 2008, 23(2):165-169.
[37] McHardy I, Keegan C, Sim JH, et al. Transcriptional profiles of Treponema denticola in response to en-vironmental conditions[J]. PLoS One, 2010, 5(10):e13655.
[38] McDowell JV, Huang B, Fenno JC, et al. Analysis of a unique interaction between the complement re-gulatory protein factor H and the periodontal pathogen Treponema denticola [J]. Infect Immun, 2009, 77(4): 1417-1425.
[39] McDowell JV, Frederick J, Miller DP, et al. Identi-fication of the primary mechanism of complement evasion by the periodontal pathogen, Treponema denticola [J]. Mol Oral Microbiol, 2011, 26(2):140- 149.
[40] Fenno JC. Treponema denticola interactions with host proteins[J]. J Oral Microbiol, 2012, 4:PMC3285142.
[41] Miller DP, Bell JK, McDowell JV, et al. Structure of factor H-binding protein B(FhbB) of the periopatho-gen, Treponema denticola : insights into progression of periodontal disease[J]. J Biol Chem, 2012, 287 (16):12715-12722.
[42] Miller DP, Oliver LD Jr, Tegels BK, et al. The Treponema denticola FhbB protein is a dominant early antigen that elicits FhbB variant-specific anti-bodies that block factor H binding and cleavage by dentilisin[J]. Infect Immun, 2016, 84(7):2051-2058.
[43] Deng QD, Han Y, Xia X, et al. Effects of the oral spirochete Treponema denticola on interleukin-8 expression from epithelial cells[J]. Oral Microbiol Immunol, 2001, 16(3):185-187.
[44] Jo AR, Baek KJ, Shin JE, et al. Mechanisms of IL-8 suppression by Treponema denticola in gingival epithelial cells[J]. Immunol Cell Biol, 2014, 92(2): 139-147.
[45] Okuda T, Kimizuka R, Miyamoto M, et al. Treponema denticola induces interleukin-8 and macrophage chemoattractant protein 1 production in human umbilical vein epithelial cells[J]. Microbes Infect, 2007, 9(7):907-913.
[46] Miyamoto M, Ishihara K, Okuda K. The Treponema denticola surface protease dentilisin degrades in-terleukin-1 beta(IL-1 beta), IL-6, and tumor necrosis factor alpha[J]. Infect Immun, 2006, 74(4):2462- 2467.
[47] Yamazaki T, Miyamoto M, Yamada S, et al. Surface protease of Treponema denticola hydrolyzes C3 and influences function of polymorphonuclear leukocytes [J]. Microbes Infect, 2006, 8(7):1758-1763.
[1] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[2] 成益凡,秦旭,姜鸣,朱光勋. 牙周病中固有淋巴细胞的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 32-36.
[3] 李伟光,吴亚菲,郭淑娟. 无机纳米粒子在牙周病诊疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 724-730.
[4] 李归平,秦旭,朱光勋. 腺苷酸活化蛋白激酶在牙周病发生发展中的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 343-348.
[5] 穆新月,刘树泰. 动机性访谈在牙周病患者临床管理中的应用进展[J]. 国际口腔医学杂志, 2022, 49(1): 94-99.
[6] 白皓亮,杨禾,赵蕾. 牙周病风险评估及预后判断工具的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 696-702.
[7] 周万航,李嫣斐,许日聪,万启军. 牙周非手术治疗对慢性肾脏病危险因素及全身炎症水平影响的Meta分析[J]. 国际口腔医学杂志, 2021, 48(5): 528-535.
[8] 沈忆芬,刘超,汤颖,顾永春. 电子烟暴露对牙周健康影响的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 347-353.
[9] 秦小茹,刘梦圆. 牙周病和心肌梗死发生风险相关性队列研究的Meta分析[J]. 国际口腔医学杂志, 2021, 48(2): 165-172.
[10] 郏乐铭,贾小玥,杨燃,周学东,徐欣. 益生菌制剂在牙周病防治中的应用进展[J]. 国际口腔医学杂志, 2020, 47(5): 515-521.
[11] 张琳琳,杜毅. 畸形舌侧沟的治疗进展[J]. 国际口腔医学杂志, 2020, 47(4): 458-462.
[12] 刘琳,周婕妤,吴亚菲,赵蕾. 益生菌生态调节在牙周病防治中的应用[J]. 国际口腔医学杂志, 2020, 47(2): 131-137.
[13] 程国平,丁一,郭淑娟. 静电纺丝纤维作为牙周药物传递系统的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 565-570.
[14] 胡竹林,赵诣,李茵. 口腔龈沟液生物标志物的检测分析现状及临床应用前景展望[J]. 国际口腔医学杂志, 2019, 46(3): 308-315.
[15] 郭淑娟, 刘倩, 丁一. 牙周病和植体周病国际新分类简介[J]. 国际口腔医学杂志, 2019, 46(2): 125-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .