国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (2): 195-199.doi: 10.7518/gjkq.2017.02.016

• 综述 • 上一篇    下一篇

韦荣球菌与龋病和链球菌间的关系

王玉霞,周学东,李明云   

  1. 口腔疾病研究国家重点实验室 华西口腔医院牙体牙髓病科(四川大学) 成都 610041
  • 收稿日期:2016-03-20 出版日期:2017-03-01 发布日期:2017-03-01
  • 通讯作者: 李明云,讲师,博士,Email:limingyun@scu.edu.cn
  • 作者简介:王玉霞,硕士,Email:2014324030042@stu.scu.edu.cn
  • 基金资助:
    国家自然科学基金(81400501,81430011); 中国国际科技合作计划(2014DFE30180)

A review on the role of Veillonella in caries and its interaction with Streptococcus

Wang Yuxia, Zhou Xuedong, Li Mingyun.   

  1. State Key Laboratory of Oral Diseases, Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2016-03-20 Online:2017-03-01 Published:2017-03-01
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(81400501, 81430011) and the International Science and Technology Cooperation Program of China(2014DFE30180).

摘要: 韦荣球菌为口腔微生态的重要成员之一,在人类口腔中呈高丰度分布。韦荣球菌不能代谢糖产酸,但能代谢乳酸,这一点曾被认为对龋病的发生发展有抑制作用,但体外及动物试验对于韦荣球菌在龋病发生中的作用及其机制并未得出明确结论。近来随着口腔微生物组学研究的发展,人们发现,韦荣球菌在龋活跃者口腔中的分布较无龋者高,韦荣球菌与多种致龋菌分布呈高度相关性,韦荣球菌对变异链球菌等致龋菌有促进作用。龋病是多种微生物共同作用的结果,而韦荣球菌作为龋病相关因素不容忽视。本文就韦荣球菌在口腔中的分布、韦荣球菌与龋病的关系、韦荣球菌与链球菌的相互作用等研究进展作一综述,以剖析韦荣球菌在龋病发生发展中的作用及其机制。

关键词: 韦荣球菌, 链球菌, 龋病

Abstract: The genus Veillonella is a member of the normal oral flora and is highly abundant in the human oral cavity. Veillonella utilizes lactate, which ameliorates the caries process. However, Resultsof in vitro studies and rat model systems are ambiguous. With the development of human oral microbiome research, several studies reported that the frequency of Veillonella in caries-activated individuals is higher than that in caries-free ones, and the distribution of Veillonella is highly related to some cariogenic Streptococcus species. Veillonella facilitates the action of some cariogenic Streptococcus species, such as Streptococcus mutans in caries development. These findings create new focus on the genus Veillonella as a factor relating to caries. This paper provides a review on the distribution of Veillonella in human oral cavity, the relationship between Veillonella and caries, and the relationship between Veillonella and Streptococcus species related to caries.

Key words: Veillonella, Streptococcus, dental caries

中图分类号: 

  • R780.2
[1] 樊明文, 周学东. 牙体牙髓病学[M]. 3版. 北京: 人民卫生出版社, 2008:3-49. Fan MW, Zhou XD. Operative dentistry and endo-dontics[M]. 3rd ed. Beijing: People’s Medical Pub-lishing House, 2008:3-49.
[2] Marsh PD. Microbiology of dental plaque biofilms and their role in oral health and caries[J]. Dent Clin North Am, 2010, 54(3):441-454.
[3] Peterson SN, Snesrud E, Liu J, et al. The dental plaque microbiome in health and disease[J]. PLoS ONE, 2013, 8(3):e58487.
[4] Oda Y, Hayashi F, Okada M. Longitudinal study of dental caries incidence associated with Streptococcus mutans and Streptococcus sobrinus in patients with intellectual disabilities[J]. BMC Oral Health, 2015, 2(15):102-106.
[5] Gomar-Vercher S, Cabrera-Rubio R, Mira A, et al. Relationship of children’s salivary microbiota with their caries status: a pyrosequencing study[J]. Clin Oral Investig, 2014, 18(9):2087-2094.
[6] Loesche WJ. Role of Streptococcus mutans in human dental decay[J]. Microbiol Rev, 1986, 50(4):353- 380.
[7] He X, McLean JS, Guo L, et al. The social structure of microbial community involved in colonization resistance[J]. ISME J, 2014, 8(3):564-574.
[8] Kreth J, Zhang Y, Herzberg MC. Streptococcal anta-gonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Strepto-coccus mutans [J]. J Bacteriol, 2008, 190(13):4632- 4640.
[9] Do T, Sheehy EC, Mulli T, et al. Transcriptomic analysis of three Veillonella spp. present in carious dentine and in the saliva of caries-free individuals [J]. Front Cell Infect Microbiol, 2015, 5(25):21-28.
[10] Mashima I, Nakazawa F. The influence of oral Veillonella species on biofilms formed by Strep-tococcus species [J]. Anaerobe, 2014, 28:54-61.
[11] Byun R, Carlier JP, Jacques NA, et al. Veillonella denticariosi sp. nov., isolated from human carious dentine[J]. Int J Syst Evol Microbiol, 2007, 57(12): 2844-2848.
[12] Arif N, Do T, Byun R, et al. Veillonella rogosae sp. nov., an anaerobic, gram-negative coccus isolated from dental plaque[J]. Int J Syst Evol Microbiol, 2008, 58(Pt 3):581-584.
[13] Mashima I, Kamaguchi A, Miyakawa H, et al. Veillonella tobetsuensis sp. nov., an anaerobic, gram-negative coccus isolated from human tongue biofilms[J]. Int J Syst Evol Microbiol, 2013, 63(4): 1443-1449.
[14] Zhou P, Liu J, Merritt J, et al. A YadA-like autotran-sporter, Hag1 in Veillonella atypica is a multivalent hemagglutinin involved in adherence to oral stre-ptococci, Porphyromonas gingivalis , and human oral buccal cells[J]. Mol Oral Microbiol, 2015, 30(4): 269-279.
[15] Kistler JO, Pesaro M, Wade WG, et al. Development and pyrosequencing analysis of an in - vitro oral biofilm model[J]. BMC Microbiol, 2015, 15(24):e1803.
[16] Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, et al. The oral metagenome in health and disease[J]. ISME J, 2012, 6(1):46-56.
[17] Xu H, Hao W, Zhou Q, et al. Plaque bacterial microbiome diversity in children younger than 30 months with or without caries prior to eruption of second primary molars[J]. PLoS One, 2014, 9(2):e89269.
[18] Schulze-Schweifing K, Banerjee A, Wade WG, et al. Comparison of bacterial culture and 16S rRNA community profiling by clonal analysis and pyrose-quencing for the characterization of the dentine caries-associated microbiome[J]. Front Cell Infect Microbiol, 2014, 4(164):1-8.
[19] Johansson I, Witkowska E, Kaveh B, et al. The mi-crobiome in populations with a low and high pre-valence of caries[J]. J Dent Res, 2016, 95(1):80-86.
[20] Becker MR, Paster BJ, Leys EJ, et al. Molecular analysis of bacterial species associated with child-hood caries[J]. J Clin Microbiol, 2002, 40(3):1001- 1009.
[21] Peterson SN, Meissner T, Su AI, et al. Functional expression of dental plaque microbiota[J]. Front Cell Infect Microbiol, 2014, 4:108.
[22] Bradshaw DJ, Marsh PD. Analysis of pH-driven disruption of oral microbial communities in vitro [J]. Caries Res, 1998, 32(6):456-462.
[23] Delwiche EA, Pestka JJ, Tortorello ML. The veillo-nellae : gram-negative cocci with a unique physio-logy[J]. Annu Rev Microbiol, 1985, 39:175-193.
[24] Mikx FH, van der Hoeven JS. Symbiosis of Strep-tococcus mutans and Veillonella alcalescens in mixed continuous cultures[J]. Arch Oral Biol, 1975, 20(7):407-410.
[25] Tanner AC, Mathney JM, Kent RL, et al. Cultivable anaerobic microbiota of severe early childhood caries[J]. J Clin Microbiol, 2011, 49(4):1464-1474.
[26] Lima KC, Coelho LT, Pinheiro IV, et al. Microbiota of dentinal caries as assessed by reverse-capture checkerboard analysis[J]. Caries Res, 2011, 45(1): 21-30.
[27] Noorda WD, Purdell-Lewis DJ, van Montfort AM, et al. Monobacterial and mixed bacterial plaques of Streptococcus mutans and Veillonella alcalescens in an artificial mouth: development, metabolism, and effect on human dental enamel[J]. Caries Res, 1988, 22(6):342-347.
[28] Chalmers NI, Palmer RJ Jr, Cisar JO, et al. Charac-terization of a Streptococcus sp.- Veillonella sp. community micromanipulated from dental plaque[J]. J Bacteriol, 2008, 190(24):8145-8154.
[29] Egland PG, Palmer RJ Jr, Kolenbrander PE. Inter-species communication in Streptococcus gordonii - Veillonella atypica biofilms: signaling in flow con-ditions requires juxtaposition[J]. Proc Natl Acad Sci USA, 2004, 101(48):16917-16922.
[30] Levin-Sparenberg E, Shin JM, Hastings EM, et al. High throughput quantitative method for assessing coaggregation among oral bacterial species[J]. Lett Appl Microbiol, 2016, 63(4):274-281.
[31] Palmer RJ Jr, Diaz PI, Kolenbrander PE. Rapid succession within the Veillonella population of a developing human oral biofilm in situ[J]. J Bacteriol, 2006, 188(11):4117-4124.
[32] McBride BC, van der Hoeven JS. Role of interbac-terial adherence in colonization of the oral cavities of gnotobiotic rats infected with Streptococcus mutans and Veillonella alcalescens [J]. Infect Immun, 1981, 33(2):467-472.
[33] Kara D, Luppens SB, Cate JM. Differences between single- and dual-species biofilms of Streptococcus mutans and Veillonella parvula in growth, acido-genicity and susceptibility to chlorhexidine[J]. Eur J Oral Sci, 2006, 114(1):58-63.
[34] Kara D, Luppens SB, van Marle J, et al. Microstruc-tural differences between single-species and dual-species biofilms of Streptococcus mutans and Vei-llonella parvula , before and after exposure to chlo-rhexidine[J]. FEMS Microbiol Lett, 2007, 271(1): 90-97.
[35] Liu J, Wu C, Huang IH, et al. Differential response of Streptococcus mutans towards friend and foe in mixed-species cultures[J]. Microbiology, 2011, 157 (Pt 9):2433-2444.
[36] Mashima I, Nakazawa F. The interaction between Streptococcus spp. and Veillonella tobetsuensis in the early stages of oral biofilm formation[J]. J Bac-teriol, 2015, 197(13):2104-2111.
(本文采编 王晴)
[1] 高若凡,夏斌. 基于慢性疾病管理理念的重度低龄儿童龋管理方法[J]. 国际口腔医学杂志, 2023, 50(3): 341-346.
[2] 龚涛,李雨庆,周学东. 变异链球菌糖转运及其调控机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 506-510.
[3] 李姗姗,杨芳. 变异链球菌与白色念珠菌相互作用在龋病发生中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 392-396.
[4] 朱锦怡,樊琪,周媛,邹静,黄睿洁. 唾液蛋白作为低龄儿童龋预测标志物的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 212-219.
[5] 刘程程, 丁一. 妊娠期常见口腔感染性疾病的临床诊疗和管理策略[J]. 国际口腔医学杂志, 2021, 48(6): 621-628.
[6] 范宇,程磊. 吸烟影响口腔微环境及其在龋病进展中的作用[J]. 国际口腔医学杂志, 2021, 48(5): 609-613.
[7] 杨志雷,刘宝盈. 龋病牙菌斑微生态研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 506-514.
[8] 崔钰嘉,孙建勋,周学东. 黄连素的生物学功能及治疗口腔疾病研究的进展[J]. 国际口腔医学杂志, 2020, 47(1): 115-120.
[9] 陈艳艳,彭显,周学东,程磊. 定量光导荧光技术在龋病及牙周疾病诊治中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 699-704.
[10] 王晓波,林世耀,李霞. 母亲与儿童龋病关系的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 469-474.
[11] 王静,王艳,王川东,黄睿洁,田燕,胡玮,邹静. 甘草及其提取物在防治口腔感染相关疾病中的应用[J]. 国际口腔医学杂志, 2018, 45(5): 546-552.
[12] 丁杰, 宋光泰. 微创技术在儿童龋病治疗中的应用[J]. 国际口腔医学杂志, 2018, 45(4): 473-479.
[13] 盖阔, 郝丽英, 蒋丽. 应用原子力显微镜对口腔变异链球菌黏附机制的研究[J]. 国际口腔医学杂志, 2017, 44(3): 320-324.
[14] 郑黎薇, 邹静, 夏斌, 刘英群, 黄洋, 赵今. 儿童乳磨牙金属预成冠的修复治疗[J]. 国际口腔医学杂志, 2017, 44(2): 125-129.
[15] 刘琨,侯本祥. 粪肠球菌和变异链球菌脂磷壁酸的生物学活性[J]. 国际口腔医学杂志, 2017, 44(1): 118-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .