国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (2): 183-188.doi: 10.7518/gjkq.2017.02.014

• 论著 • 上一篇    下一篇

胰岛素对糖尿病大鼠种植体周骨组织代谢影响的研究

伍颖颖,宫苹   

  1. 口腔疾病研究国家重点实验室 华西口腔医院种植科(四川大学) 成都 610041
  • 收稿日期:2016-06-29 出版日期:2017-03-01 发布日期:2017-03-01
  • 通讯作者: 宫苹,教授,博士,Email:gp602002@163.com
  • 作者简介:伍颖颖,主治医师,博士,Email:yywdentist@163.com
  • 基金资助:
    国家自然科学基金面上项目(81170995); 国家自然科学基金青年基金(81400543)

Effect of insulin on bone metabolism around implant in diabetic rats

Wu Yingying, Gong Ping.   

  1. State Key Laboratory of Oral Diseases, Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2016-06-29 Online:2017-03-01 Published:2017-03-01
  • Supported by:
    This study was supported by the General Program of National Natural Science Foundation of China(81170995) and the Young Scientists Fund of National Natural Science Foundation of China(81400543).

摘要: 目的探索胰岛素治疗对于高糖环境下种植体周骨组织代谢及种植体-骨结合的影响。方法构建糖尿病大鼠模型,在大鼠股骨植入钛种植体,并给予胰岛素治疗;同时通过成骨细胞培养,体外构建高糖环境,给予胰岛素干预。结果糖尿病大鼠种植体周骨组织形成和矿化明显降低,胰岛素干预治疗能起到明显的改善作用;此外,胰岛素干预后成骨细胞中胰岛素受体表达明显增加。结论胰岛素也许通过胰岛素信号通路调控高糖环境中成骨细胞功能,改善骨组织的形成和矿化。

关键词: 糖尿病, 种植体, 胰岛素, 骨代谢

Abstract: Objective We studied the bone metabolism and implant bone contact in diabetic subjects treated with insulin. Methods Diabetic rat models were established and implanted with titanium implants and insulin treatment. The osteoblasts were cultured in high glucose amounts and treated with insulin. Results Diabetes decreased bone formation and mineralization around the rat implants, which were improved by insulin treatment. However, the implant-bone contact in insulin-treated diabetic rats remained less than those in normal rats. Moreover, insulin treatment increased the insulin receptor expression in osteoblasts that have been cultured in high glucose amounts. Conclusion Our Results indicated the role of insulin in osteoblast function in diabetic rats probably through insulin signaling; moreover, insulin mediates bone metabolism and improves bone formation and mineralization in hyperglycemic conditions.

Key words: diabetes mellitus, implant, insulin, bone metabolism

中图分类号: 

  • R783.4
5 5 参考文献
[1] Whiting DR, Guariguata L, Weil C, et al. IDF dia-betes atlas: global estimates of the prevalence of diabetes for 2011 and 2030[J]. Diabetes Res Clin Pract, 2011, 94(3):311-321.
[2] Zhen D, Chen Y, Tang X. Metformin reverses the deleterious effects of high glucose on osteoblast function[J]. J Diabetes Complicat, 2010, 24(5):334- 344.
[3] Al-Emadi A, Bissada N, Farah C, et al. Systemic diseases among patients with and without alveolar bone loss[J]. Quintessence Int, 2006, 37(10):761- 765.
[4] Siqueira JT, Cavalher-Machado SC, Arana-Chavez VE, et al. Bone formation around titanium implants in the rat tibia: role of insulin[J]. Implant Dent, 2003, 12(3):242-251.
[5] Holzhausen M, Garcia DF, Pepato MT, et al. The influence of short-term diabetes mellitus and insulin therapy on alveolar bone loss in rats[J]. J Periodont Res, 2004, 39(3):188-193.
[6] Al Amri MD, Kellesarian SV, Al-Kheraif AA, et al. Effect of oral hygiene maintenance on HbA1c levels and peri-implant parameters around immediately-loaded dental implants placed in type-2 diabetic pa-tients: 2 years follow-up[J]. Clin Oral Implants Res, 2016, 27(11):1439-1443.
[7] Oates TW Jr, Galloway P, Alexander P, et al. The effects of elevated hemoglobin A(1c) in patients with type 2 diabetes mellitus on dental implants: survival and stability at one year[J]. J Am Dent Assoc, 2014, 145(12):1218-1226.
[8] Le Roith D, Zick Y. Recent advances in our unders-tanding of insulin action and insulin resistance[J]. Diabetes Care, 2001, 24(3):588-597.
[9] Fulzele K, Riddle RC, DiGirolamo DJ, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition[J]. Cell, 2010, 142(2):309-319.
[10] Courtland HW, Sun H, Beth-On M, et al. Growth hormone mediates pubertal skeletal development independent of hepatic IGF-1 production[J]. J Bone Miner Res, 2011, 26(4):761-768.
[11] Ogasawara A, Nakajima A, Nakajima F, et al. Mole-cular basis for affected cartilage formation and bone union in fracture healing of the streptozotocin-in-duced diabetic rat[J]. Bone, 2008, 43(5):832-839.
[12] Liu Z, Zhou W, Tangl S, et al. Potential mechanism for osseointegration of dental implants in Zucker diabetic fatty rats[J]. Br J Oral Maxillofac Surg, 2015, 53(8):748-753.
[13] Chrcanovic BR, Albrektsson T, Wennerberg A. Dia-betes and oral implant failure: a systematic review[J]. J Dent Res, 2014, 93(9):859-867.
[14] Verhaeghe J, Suiker AM, Visser WJ, et al. The effects of systemic insulin, insulin-like growth factor-Ⅰand growth hormone on bone growth and turnover in spontaneously diabetic BB rats[J]. J Endocrinol, 1992, 134(3):485-492.
[15] McCracken MS, Aponte-Wesson R, Chavali R, et al. Bone associated with implants in diabetic and insulin-treated rats[J]. Clin Oral Implants Res, 2006, 17(5): 495-500.
[16] Blüher M, Michael MD, Peroni OD, et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intole-rance[J]. Dev Cell, 2002, 3(1):25-38.
[17] Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction[J]. Mol Cell, 2000, 6(1):87-97.
[18] Fukumoto S, Martin TJ. Bone as an endocrine organ [J]. Trends Endocrinol Metab, 2009, 20(5):230-236.
[19] Lee NK, Karsenty G. Reciprocal regulation of bone and energy metabolism[J]. Trends Endocrinol Metab, 2008, 19(5):161-166.
[20] Karsenty G. Convergence between bone and energy homeostases: leptin regulation of bone mass[J]. Cell Metab, 2006, 4(5):341-348.
[21] Pun KK, Lau P, Ho PW. The characterization, re-gulation, and function of insulin receptors on osteo-blast-like clonal osteosarcoma cell line[J]. J Bone Miner Res, 1989, 4(6):853-862.
[1] 孙旭,邓振南,文才,赵颖. Er: YAG激光照射种植体表面微形貌变化的扫描电子显微镜观察[J]. 国际口腔医学杂志, 2023, 50(6): 669-673.
[2] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[3] 龚佳明,赵瑞敏,潘宏伟,郎鑫,余占海,李健学. 动态导航与静态导航对种植体准确性的Meta分析[J]. 国际口腔医学杂志, 2023, 50(5): 538-551.
[4] 陆倩,夏海斌,王敏. 种植体磨光整形术治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 152-158.
[5] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[6] 曹正国. 修复治疗相关的牙周问题考量[J]. 国际口腔医学杂志, 2022, 49(1): 1-11.
[7] 朱轩智,赵蕾. 甲状腺功能减退症与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 380-384.
[8] 路泊遥,杨大维,刘蔚晴,梁星. 超短种植体临床应用效果的影响因素[J]. 国际口腔医学杂志, 2021, 48(3): 329-328.
[9] 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340.
[10] 郑桂婷,徐燕,吴明月. 种植体周围疾病治疗的专家共识及治疗方法的进展[J]. 国际口腔医学杂志, 2020, 47(6): 725-731.
[11] 易祖木,王昕宇,伍颖颖. 糖尿病患者口腔细菌多样性的变化[J]. 国际口腔医学杂志, 2020, 47(5): 522-529.
[12] 童子安,姒蜜思. 种植体表面菌斑去污方式的体外研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 589-594.
[13] 孙坚炜,雷利红,谭静怡,陈莉丽. 微小RNA 155对骨免疫的调控及其在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 607-615.
[14] 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444.
[15] 张敏,万浩元. 种植体周围炎药物治疗与激光治疗的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 463-470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .