国际口腔医学杂志 ›› 2016, Vol. 43 ›› Issue (3): 343-347.doi: 10.7518/gjkq.2016.03.020

• 综述 • 上一篇    下一篇

促丝裂原激活蛋白激酶在牙髓干细胞向成牙本质细胞分化和牙髓损伤修复中的作用

林颖1,秦伟1,邹瑞2,林正梅1   

  1. 1.中山大学光华口腔医学院?附属口腔医院牙体牙髓病科 广东省口腔医学重点实验室 广州 510055;2.广州医科大学附属口腔医院?广州口腔病研究所?口腔医学重点实验室 广州 510140
  • 收稿日期:2015-06-25 修回日期:2015-12-15 出版日期:2016-05-01 发布日期:2016-05-01
  • 通讯作者: 林正梅,教授,博士,Email:linzhm@mail.sysu.edu.cn
  • 作者简介:林颖,硕士,Email:liny27@mail2.sysu.edu.cn
  • 基金资助:
    国家自然科学基金(81271124)

Regulation of mitogen-activated protein kinase in the odontoblast differentiation of dental pulp stem cells and pulp injury and reparation

Lin Ying1, Qin Wei1, Zou Rui2, Lin Zhengmei1   

  1. 1. Dept. of Conservative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; 2. Institute of Oral Diseases Research, Key Laboratory of Stomatology, The Affiliated Stomatological Hospital, Guangzhou Medical University, Guangzhou 510140, China) This study was supported by the National Natural Science Foundation of China(81271124).
  • Received:2015-06-25 Revised:2015-12-15 Online:2016-05-01 Published:2016-05-01

摘要: 通过诱导牙髓干细胞(DPSC)向成牙本质细胞方向分化,龋源性牙髓炎的治疗将不再局限于根管治疗这一临床选择,修复治疗也不再成为缺失牙治疗的唯一方案。促丝裂原激活蛋白激酶(MAPK),尤其是P38MAPK通过直接或间接磷酸化特定的转录因子,将细胞外刺激信号转导至细胞及其核内,从而引起一系列细胞生物学反应,如细胞增殖、分化、转化和程序性死亡。骨形态发生蛋白-2、矿物三氧化物聚合体和Biodentine皆可诱导DPSC向成牙本质细胞分化,而三者正是通过MAPK信号转导通路发挥作用的。在组织工程支架诱导DPSC分化过程中,支架材料通过激活P38MAPK信号转导通路促进了DPSC的分化。此外,MAPK信号转导通路参与牙髓损伤修复中DPSC的迁移、黏附和分化,参与牙髓损伤修复中牙本质的形成。由于MAPK信号转导通路在细胞增殖、分化和生存等过程中都起着十分关键的作用,因此,深入研究其反应分子、作用底物和作用机制有着重要的理论和临床意义。

关键词: 促丝裂原激活蛋白激酶, 牙髓干细胞, 信号转导通路, 细胞分化, 促丝裂原激活蛋白激酶, 牙髓干细胞, 信号转导通路, 细胞分化

Abstract: Several more alternatives can be offered for the treatment of carious pulp disease and restoration of lost teeth by inducing the odontoblast differentiation of dental pulp stem cell(DPSC). Mitogen-activated protein kinases(MAPK), specifically P38MAPK, are involved in various cellular functions, such as cell proliferation, differentiation, and apoptosis, by transducing extracellular signal to the cell and nucleus through transcription factor phosphorylation. In addition, bone morphogenetic protein-2, mineral trioxide aggregate, and biodentin can induce the odontoblast differentiation of DPSC by regulating MAPK signaling pathway and certain scaffolds in tissue engineering. Moreover, the MAPK signaling pathway performs an important function in the migration, adhesion, and differentiation of DPSC during dental pulp injury. Based on the key function of MAPK signaling pathway, further study on the molecule, substrate, and mechanisms is crucial.

Key words: mitogen-activated protein kinase, dental pulp stem cell, signal transduction pathway, differentiation, mitogen-activated protein kinase, dental pulp stem cell, signal transduction pathway, differentiation

中图分类号: 

  • Q 55
[1] Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells(DPSC) in vitro and in vivo[J]. Proc Natl Acad Sci USA, 2000, 97(25):13625-13630.
[2] Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells[J]. J Dent Res, 2002, 81(8):531-535.
[3] Huang AH, Chen YK, Lin LM, et al. Isolation and characterization of dental pulp stem cells from a supernumerary tooth[J]. J Oral Pathol Med, 2008, 37(9):571-574.
[4] Harada H, Kettunen P, Jung HS, et al. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling[J]. J Cell Biol, 1999, 147(1):105-120.
[5] Téclès O, Laurent P, Zygouritsas S, et al. Activation of human dental pulp progenitor/stem cells in response to odontoblast injury[J]. Arch Oral Biol, 2005, 50(2):103-108.
[6] Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis[J]. Bone, 2001, 29(6):532-539.
[7] Blüthgen N, Legewie S. Systems analysis of MAPK signal transduction[J]. Essays Biochem, 2008, 45:95-107.
[8] Patil CS, Kirkwood KL. P38MAPK signaling in oralrelated diseases[J]. J Dent Res, 2007, 86(9):812-825.
[9] Ruch JV, Lesot H, Bègue-Kirn C. Odontoblast differentiation[J]. Int J Dev Biol, 1995, 39(1):51-68.
[10] Smith AJ, Cassidy N, Perry H, et al. Reactionary dentinogenesis[J]. Int J Dev Biol, 1995, 39(1):273-280.
[11] Qin W, Lin ZM, Deng R, et al. P38a MAPK is involved in BMP-2-induced odontoblastic differentiation of human dental pulp cells[J]. Int Endod J, 2012, 45(3):224-233.
[12] Zhao X, He W, Song Z, et al. Mineral trioxide aggregate promotes odontoblastic differentiation via mitogen-activated protein kinase pathway in human dental pulp stem cells[J]. Mol Biol Rep, 2012, 39(1):215-220.
[13] Luo Z, Kohli MR, Yu Q, et al. Biodentine induces human dental pulp stem cell differentiation through mitogen-activated protein kinase and calcium-/ calmodulin-dependent protein kinaseⅡpathways[J]. J Endod, 2014, 40(7):937-942.
[14] Simon SR, Berdal A, Cooper PR, et al. Dentin-pulp complex regeneration: from lab to clinic[J]. Adv Dent Res, 2011, 23(3):340-345.
[15] Zhang H, Liu S, Zhou Y, et al. Natural mineralized scaffolds promote the dentinogenic potential of dental pulp stem cells via the mitogen-activated protein kinase signaling pathway[J]. Tissue Eng Part A, 2012, 18(7/8):677-691.
[16] Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engenerring[J]. Crit Rev Oral Biol Med, 2004, 15(1):13-27.
[17] Fitzgerald M, Chiego DJ, Heys DR. Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth[J]. Arch Oral Biol, 1990, 35(9):707-715.
[18] Sloan AJ, Smith AJ. Stem cells and the dental pulp: potential roles in dentine regeneration and repair[J]. Oral Dis, 2007, 13(2):151-157.
[19] Hosoya S, Matsushima K, Ohbayashi E, et al. Stimulation of interleukin-1beta-independent interleukin-6 production in human dental pulp cells by lipopolysaccharide[J]. Biochem Mol Med, 1996, 59(2):138-143.
[20] Warfvinge J. Morphometric analysis of teeth with inflamed pulp[J]. J Dent Res, 1987, 66(1):78-83.
[21] Li D, Fu L, Zhang Y, et al. The effects of LPS on adhesion and migration of human dental pulp stem cells in vitro[J]. J Dent, 2014, 42(10):1327-1334.
[22] He W, Wang Z, Luo Z, et al. LPS promote the odontoblastic differentiation of human dental pulp stem cells via MAPK signaling pathway[J]. J Cell Physiol, 2015, 230(3):554-561.
[23] Simon S, Smith AJ, Berdal A, et al. The MAP kinase pathway is involved in odontoblast stimulation via p38 phosphorylation[J]. J Endod, 2010, 36(2):256-259.
[24] Güven G, Altun C, Günhan O, et al. Co-expression of cyclooxygenase-2 and vascular endothelial growth factor in inflamed human pulp: an immunohistochemical study[J]. J Endod, 2007, 33(1):18-20.
[25] Yoshida S. A scanning electron microscope study of vascular development in the dental papilla of prenatal rat molars[J]. Anat Embryol, 1991, 183(4):379-384.
[26] Botero TM, Son JS, Vodopyanov D, et al. MAPK signaling is required for LPS-induced VEGF in pulp stem cells[J]. J Dent Res, 2010, 89(3):264-269.
[27] Vandomme J, Touil Y, Ostyn P, et al. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation[J]. Stem Cells Dev, 2014, 23(8):839-851.
[28] Bikkavilli RK, Feigin ME, Malbon CC. p38 mitogenactivated protein kinase regulates canonical Wntbeta-catenin signaling by inactivation of GSK3beta [J]. J Cell Sci, 2008, 121(Pt 21):3598-3607.
[29] Faust D, Schmitt C, Oesch F, et al. Differential p38-dependent signalling in response to cellular stress and mitogenic stimulation in fibroblasts[J]. Cell Commun Signal, 2012, 10:6.
[30] Wood CD, Thornton TM, Sabio G, et al. Nuclear localization of P38MAPK in response to DNA damage [J]. Int J Biol Sci, 2009, 5(5):428-437.
[31] Gong X, Ming X, Deng P, et al. Mechanisms regulating the nuclear translocation of p38 MAP kinase[J]. J Cell Biochem, 2010, 110(6):1420-1429.
[32] Ruch JV. Odontoblast commitment and differentiation[J]. Biochem Cell Biol, 1998, 76(6):923-938.
(本文采编 王晴)
[1] 于乐蓉,李祥伟,艾虹. 牙髓干细胞干性维持的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 463-471.
[2] 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488.
[3] 付恒怡,汪成林. 人牙髓干细胞无血清培养方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 220-226.
[4] 熊梦琳,吴龙,马丽,赵今. 转化生长因子-β2促进牙髓干细胞增殖和分化的作用研究[J]. 国际口腔医学杂志, 2021, 48(6): 635-639.
[5] 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744.
[6] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
[7] 杨宇轩,张海霞,王爽. 釉原蛋白在牙周组织再生中的生物学作用[J]. 国际口腔医学杂志, 2019, 46(2): 191-196.
[8] 张鑫, 汪成林, 杨静, 叶玲. 牙髓干细胞的表观遗传调控[J]. 国际口腔医学杂志, 2018, 45(3): 261-266.
[9] 武云舒, 袁泉. RNA腺嘌呤6-甲基化修饰调控干细胞分化的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 272-275.
[10] 杨鑫, 李思洁, 赵玮. Wnt信号通路在调控牙髓干细胞多向分化及炎症损伤修复中的作用[J]. 国际口腔医学杂志, 2018, 45(3): 286-290.
[11] 刘润恒,刘于冬,陈卓凡. 微小RNA在骨分化过程中的作用机制[J]. 国际口腔医学杂志, 2017, 44(1): 108-113.
[12] 耿远明1,申晓青1,徐平平2. 生物力刺激和促丝裂原激活蛋白激酶对骨改建的影响[J]. 国际口腔医学杂志, 2016, 43(6): 700-705.
[13] 杨懋彬1 曾倩2. 再生牙髓病学——牙髓再生的新方向[J]. 国际口腔医学杂志, 2016, 43(5): 495-499.
[14] 胥欣 王艳民 白丁. 沉默交配型信息调节因子2同源蛋白1与骨和软骨代谢的关系[J]. 国际口腔医学杂志, 2016, 43(5): 569-572.
[15] 邱静怡,万凌云,赵志河,李娟. 内外源性应力对间质干细胞成软骨分化的调控[J]. 国际口腔医学杂志, 2016, 43(4): 449-455.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .