国际口腔医学杂志 ›› 2016, Vol. 43 ›› Issue (3): 309-313.doi: 10.7518/gjkq.2016.03.013

• 综述 • 上一篇    下一篇

第三代生物医用材料在口腔领域中的应用

李鑫,周进茹,李紫嫣,陈文川   

  1. 口腔疾病研究国家重点实验室 华西口腔医院修复科(四川大学) 成都 610041
  • 收稿日期:2015-09-09 修回日期:2016-01-29 出版日期:2016-05-01 发布日期:2016-05-01
  • 通讯作者: 陈文川,副教授,博士,Email:hxkqcwc@scu.edu.cn
  • 作者简介:李鑫,硕士,Email:lixinhy2013@163.com

Application of third-generation biomedical materials in dentistry

Li Xin, Zhou Jinru, Li Ziyan, Chen Wenchuan   

  1. State Key Laboratory of Oral Diseases, Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
  • Received:2015-09-09 Revised:2016-01-29 Online:2016-05-01 Published:2016-05-01

摘要: 生物医用材料是指以医疗为目的,用于修复或替换人体组织器官或增进其功能的材料。医学尤其是口腔医学的发展史是与医用材料的发展密切相关的,随着材料科学、生命科学和临床医学的不断发展,生物医用材料的研究也取得了很大的进步。新一代(第三代)生物医用材料因其良好的生物活性及生物降解性,在口腔医学领域得到了广泛应用,如骨组织工程支架材料、促进牙周组织再生的生物膜、运载药物的缓释载体等。本文就生物医用材料的发展历程以及第三代生物医用材料在口腔领域的应用研究进展作一综述,旨在使读者能够简单了解第三代生物医用材料的基本知识,并在此基础上为其在口腔医学领域的选择、应用提供参考。

关键词: 生物医用材料, 第三代生物医用材料, 口腔医学, 组织工程, 生物医用材料, 第三代生物医用材料, 口腔医学, 组织工程

Abstract: Biomedical materials are special functional materials used to replace and repair diseased, damaged, or aging tissues. The histories of medicine, especially dentistry, are closely related to the development of medical materials. With the development of materials science, life science, and clinical medicine, research about biomedical materials has made great progress. New generation(third-generation) biomedical materials, such as bone tissue engineering scaffold, biofilm for periodontal regeneration, drug controlled-release carrier, etc., are widely used in the field of oral medicine because of their good biocompatibility and biodegradability. In this review, the development of biomedical materials and the research progress of the third-generation biomedical materials in dentistry are discussed. This review aims to help readers understand third-generation biomedical materials and to provide a reference for the application and selection of them in dentistry.

Key words: biomedical material, third-generation biomedical material, dentistry, tissue engineering, biomedical material, third-generation biomedical material, dentistry, tissue engineering

中图分类号: 

  • R 783.1
[1] Hench LL. Biomaterials[J]. Science, 1980, 208(4446):826-831.
[2] Hench LL, Polak JM. Third-generation biomedical materials[J]. Science, 2002, 295(5557):1014-1017.
[3] Shapoff CA, Alexander DC, Clark AE. Clinical use of a bioactive glass particulate in the treatment of human osseous defects[J]. Compend Contin Educ Dent, 1997, 18(4):352-358.
[4] Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situ tissue regeneration[J]. J Biomater Sci Polym Ed, 2004, 15(4):543-562.
[5] Griffith LG, Naughton G. Tissue engineering—current challenges and expanding opportunities[J]. Science, 2002, 295(5557):1009-1014.
[6] Levenberg S, Huang NF, Lavik E, et al. Differentiation of human embryonic stem cells on threedimensional polymer scaffolds[J]. Proc Natl Acad Sci USA, 2003, 100(22):12741-12746.
[7] Venkatesan J, Kim SK. Chitosan composites for bone tissue engineering—an overview[J]. Mar Drugs, 2010, 8(8):2252-2266.
[8] Pighinelli L, Kucharska M, Wísniewska-Wrona M, et al. Biodegradation study of microcrystalline chitosan and microcrystalline chitosan/β-TCP complex composites[J]. Int J Mol Sci, 2012, 13(6):7617-7628.
[9] El-Kamel AH, Ashri LY, Alsarra IA. Micromatricial metronidazole benzoate film as a local mucoadhesive delivery system for treatment of periodontal diseases [J]. AAPS PharmSciTech, 2007, 8(3):E75.
[10] Barat R, Srinatha A, Pandit JK, et al. Chitosan inserts for periodontitis: influence of drug loading, plasticizer and crosslinking on in vitro metronidazole release[J]. Acta Pharm, 2007, 57(4):469-477.
[11] Ferrari PC, Souza FM, Giorgetti L, et al. Development and in vitro evaluation of coated pellets con taining chitosan to potential colonic drug delivery[J]. Carbohydr Polym, 2013, 91(1):244-252.
[12] Ghasemi Tahrir F, Ganji F, Mani AR, et al. In vitro and in vivo evaluation of thermosensitive chitosan hydrogel for sustained release of insulin[J]. Drug Deliv, 2016, 23(3):1038-1046.
[13] Roller S, Covill N. The antimicrobial properties of chitosan in mayonnaise and mayonnaise-based shrimp salads[J]. J Food Prot, 2000, 63(2):202-209.
[14] Arancibia R, Maturana C, Silva D, et al. Effects of chitosan particles in periodontal pathogens and gingival fibroblasts[J]. J Dent Res, 2013, 92(8):740-745.
[15] Chudobova D, Nejdl L, Gumulec J, et al. Complexes of silver(I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts[J]. Int J Mol Sci, 2013, 14(7):13592-13614.
[16] Di Giulio M, Di Bartolomeo S, Di Campli E, et al. The effect of a silver nanoparticle polysaccharide system on streptococcal and saliva-derived biofilms [J]. Int J Mol Sci, 2013, 14(7):13615-13625.
[17] Park JS, Choi SH, Moon IS, et al. Eight-week histological analysis on the effect of chitosan on surgically created one-wall intrabony defects in beagle dogs[J]. J Clin Periodontol, 2003, 30(5):443-453.
[18] Liao F, Chen Y, Li Z, et al. A novel bioactive threedimensional beta-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering[J]. J Mater Sci Mater Med, 2010, 21(2):489-496.
[19] Lee JS, Baek SD, Venkatesan J, et al. In vivo study of chitosan-natural nano hydroxyapatite scaffolds for bone tissue regeneration[J]. Int J Biol Macromol, 2014, 67:360-366.
[20] Park H, Choi B, Nguyen J, et al. Anionic carbohydrate-containing chitosan scaffolds for bone regeneration[J]. Carbohydr Polym, 2013, 97(2):587-596.
[21] Zhang Y, Shi B, Li C, et al. The synergetic boneforming effects of combinations of growth factors expressed by adenovirus vectors on chitosan/collagen scaffolds[J]. J Control Release, 2009, 136(3):172-178.
[22] Kemp PD. Tissue engineering and cell-populated collagen matrices[J]. Methods Mol Biol, 2009, 522:363-370.
[23] Lee CH, Singla A, Lee Y. Biomedical applications of collagen[J]. Int J Pharm, 2001, 221(1/2):1-22.
[24] Wong Po Foo C, Kaplan DL. Genetic engineering of fibrous proteins: spider dragline silk and collagen[J]. Adv Drug Deliv Rev, 2002, 54(8):1131-1143.
[25] Güng?rmü? M, Kaya O. Evaluation of the effect of heterologous typeⅠcollagen on healing of bone defects[J]. J Oral Maxillofac Surg, 2002, 60(5):541-545.
[26] Sumita Y, Honda MJ, Ohara T, et al. Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering[J]. Biomaterials, 2006, 27(17):3238-3248.
[27] Su CC, Kao CT, Hung CJ, et al. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate [J]. Mater Sci Eng C Mater Biol Appl, 2014, 37:156-163.
[28] Duncan J, Macdonald JF, Hanna JV, et al. The role of the chemical composition of monetite on the synthesis and properties of α-tricalcium phosphate [J]. Mater Sci Eng C Mater Biol Appl, 2014, 34:123-129.
[29] Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells[J]. J Dent Res, 2002, 81(8):531-535.
[30] Levin MP, Getter L, Cutright DE, et al. Biodegradable ceramic in periodontal defects[J]. Oral Surg Oral Med Oral Pathol, 1974, 38(3):344-351.
[31] Hossain MZ, Yamada T, Yamauchi K. Biodegradable ceramic as a bone graft substitute followed by orthodontic tooth movement[J]. Nihon Kyosei Shika Gakkai Zasshi, 1989, 48(5):483-495.
[32] Hu J, Zhou Y, Huang L, et al. Effect of nanohydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics[J]. BMC Musculoskelet Disord, 2014, 15:114.
[1] 谭永臻,梁新华. 口腔局部麻醉药抗菌机制的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 74-81.
[2] 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746.
[3] 吴嘉馨,程兴群,吴红崑. 透明质酸在修复龈乳头退缩中的临床应用进展[J]. 国际口腔医学杂志, 2023, 50(3): 347-352.
[4] 戴清仪,郝昊,华成舸,黄波,杨征. 口腔及颅颌面部常见运动防护用具的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 366-373.
[5] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[6] 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695.
[7] 巩靖蕾,黄艳梅,王军. 多相支架在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2021, 48(5): 563-569.
[8] 曹春玲,韩冰,王晓燕. 水凝胶用于牙髓再生的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 192-197.
[9] 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70.
[10] 于林彤,宋光泰. 铒激光在儿童口腔医学中的应用[J]. 国际口腔医学杂志, 2020, 47(3): 351-355.
[11] 刘育豪,张陶. 形状记忆高分子材料在骨缺损修复再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 219-224.
[12] 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94.
[13] 梅宏翔,张懿丹,张城浩,刘恩言,陈昊,赵志河,廖文. 表没食子儿茶素没食子酸酯在干细胞增殖及成骨分化作用中的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 431-436.
[14] 卿凤,钱捷. 地理信息系统在口腔医学领域的应用与展望[J]. 国际口腔医学杂志, 2019, 46(3): 367-378.
[15] 董正谋,刘锐,刘鲁川,温秀杰. 种子细胞在牙周组织再生治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 48-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .