国际口腔医学杂志 ›› 2016, Vol. 43 ›› Issue (2): 223-227.doi: 10.7518/gjkq.2016.02.024

• 综述 • 上一篇    下一篇

口腔细菌黏附机制的研究进展

郑赛男,蒋丽,李伟   

  1. 口腔疾病研究国家重点实验室 华西口腔医院(四川大学) 成都 610041
  • 收稿日期:2015-06-01 修回日期:2015-12-16 出版日期:2016-03-01 发布日期:2016-03-01
  • 通讯作者: 李伟,教授,博士,Email:leewei@scu.edu.cn
  • 作者简介:郑赛男,硕士,Email:584365144@qq.com
  • 基金资助:
    国家自然科学基金(31200720);教育部博士点新教师基金(20120181120009)

Research progress on oral bacterial adhesion mechanism

Zheng Sainan, Jiang Li, Li Wei   

  1. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
  • Received:2015-06-01 Revised:2015-12-16 Online:2016-03-01 Published:2016-03-01

摘要: 口腔细菌黏附的机制是口腔微生物学和生态学的研究热点之一,近年来,随着分子生物研究水平的提高,口腔细菌黏附机制的研究在分子水平上有了较大的进展。细菌表面的黏附蛋白和受体以及菌毛和胞外多糖都参与细菌间的共聚及细菌对牙表面的黏附。材料表面的获得性薄膜、粗糙度、表面电荷和疏水性等特性也能影响细菌的定植和黏附。本文就细菌和材料两个方面对口腔细菌黏附的机制及控制细菌黏附的方法作一综述。

关键词: 细菌黏附, 黏附蛋白, 受体, 菌毛, 唾液薄膜, 细菌黏附, 黏附蛋白, 受体, 菌毛, 唾液薄膜

Abstract: Oral bacterial adhesion mechanism is one of the focus studies in the research on oral microbiology and ecology. In recent years, with the improvement of molecular biology, the study of mechanism of oral bacteria adhesion has exhibited considerable progress at the molecular level. The adhesion protein-receptors, fimbriae, and exopolysaccharides on bacterial surface are responsible for the coaggregation of bacteria and adhesion of bacteria to teeth. The acquired pellicle on the material surface and several characteristics of the material, such as roughness, surface charge, and hydrophobicity, can affect bacterial colonization and adhesion. In this paper, the mechanism of oral bacteria adhesion from both bacteria and material, as well as the methods to control bacterial adhesion, are reviewed.

Key words: bacteria adhesion, adhesion protein, receptor, fimbria, salivary pellicle, bacteria adhesion, adhesion protein, receptor, fimbria, salivary pellicle

中图分类号: 

  • R 780.2
[1] Flemming HC, Wingender J. The biofilm matrix[J]. Nat Rev Microbiol, 2010, 8(9):623-633.
[2] Kolenbrander PE, Palmer RJ, Rickard AH, et al. Bacterial interactions and successions during plaque development[J]. Periodontol 2000, 2006, 42:47-79.
[3] He X, Hu W, Kaplan CW, et al. Adherence to streptococci facilitates Fusobacterium nucleatum integration into an oral microbial community[J]. Microb Ecol, 2012, 63(3):532-542.
[4] Kuboniwa M, Lamont RJ. Subgingival biofilm formation[J]. Periodontol 2000, 2010, 52(1):38-52.
[5] Ramboarina S, Garnett JA, Zhou M, et al. Structural insights into serine-rich fimbriae from Gram-positive bacteria[J]. J Biol Chem, 2010, 285(42):32446-32457.
[6] Petersen HJ, Keane C, Jenkinson HF, et al. Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPⅡbⅢa[J]. Infect Immun, 2010, 78(1):413-422.
[7] Liang X, Chen YY, Ruiz T, et al. New cell surface protein involved in biofilm formation by Streptococcus parasanguinis[J]. Infect Immun, 2011, 79(8):3239-3248.
[8] Nikitkova AE, Haase EM, Scannapieco FA. Effect of starch and amylase on the expression of amylasebinding protein A in Streptococcus gordonii[J]. Mol Oral Microbiol, 2012, 27(4):284-294.
[9] Biswas I, Drake L, Biswas S. Regulation of gbpC expression in Streptococcus mutans[J]. J Bacteriol, 2007, 189(18):6521-6531.
[10] Sullan RM, Li JK, Crowley PJ, et al. Binding forces of Streptococcus mutans P1 adhesin[J]. ACS Nano, 2015, 9(2):1448-1460.
[11] Brady LJ, Maddocks SE, Larson MR, et al. The changing faces of Streptococcus antigenⅠ/Ⅱ polypeptide family adhesins[J]. Mol Microbiol, 2010, 77(2):276-286.
[12] Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization[J]. Microbiol Mol Biol Rev, 2009, 73(3):407-450.
[13] Nagata H, Iwasaki M, Maeda K, et al. Identification of the binding domain of Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase for Porphyromonas gingivalis major fimbriae[J]. Infect Immun, 2009, 77(11):5130-5138.
[14] Okahashi N, Nakata M, Sakurai A, et al. Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion[J]. Biochem Biophys Res Commun, 2010, 391(2):1192-1196.
[15] Okahashi N, Nakata M, Terao Y, et al. Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation[J]. Microb Pathog, 2011, 50(3/4):148-154.
[16] Kuramitsu HK. Molecular genetic analysis of the virulence of oral bacterial pathogens: an historical perspective[J]. Crit Rev Oral Biol Med, 2003, 14(5):331-344.
[17] Gregoire S, Xiao J, Silva BB, et al. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces[J]. Appl Environ Microbiol, 2011, 77(18):6357-6367.
[18] Esberg A, L?fgren-Burstr?m A, Ohman U, et al. Host and bacterial phenotype variation in adhesion of Streptococcus mutans to matched human hosts[J]. Infect Immun, 2012, 80(11):3869-3879.
[19] Sethi A, Mohanty B, Ramasubbu N, et al. Structure of amylase-binding protein A of Streptococcus gordonii: a potential receptor for human salivary α-amylase enzyme[J]. Protein Sci, 2015, 24(6):1013-1018.
[20] Rüdiger SG, Dahlén G, Carlén A. Pellicle and early dental plaque in periodontitis patients before and after surgical pocket elimination[J]. Acta Odontol Scand, 2012, 70(6):615-621.
[21] Mei L, Busscher HJ, van der Mei HC, et al. Influence of surface roughness on streptococcal adhesion forces to composite resins[J]. Dent Mater, 2011, 27(8):770-778.
[22] Mei L, Ren Y, Busscher HJ, et al. Poisson analysis of streptococcal bond-strengthening on saliva-coated enamel[J]. J Dent Res, 2009, 88(9):841-845.
[23] Zamperini CA, Machado AL, Vergani CE, et al. Adherence in vitro of Candida albicans to plasma treated acrylic resin. Effect of plasma parameters, surface roughness and salivary pellicle[J]. Arch Oral Biol, 2010, 55(10):763-770.
[24] Sharma S, Lavender S, Woo J, et al. Nanoscale characterization of effect of L-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy[J]. Microbiology, 2014, 160(Pt 7):1466-1473.
[25] Truong VK, Rundell S, Lapovok R, et al. Effect of ultrafine-grained titanium surfaces on adhesion of bacteria[J]. Appl Microbiol Biotechnol, 2009, 83(5):925-937.
[26] Verran J, Jackson S, Coulthwaite L, et al. The effect of dentifrice abrasion on denture topography and the subsequent retention of microorganisms on abraded surfaces[J]. J Prosthet Dent, 2014, 112(6):1513-1522.
[27] Machado MC, Cheng D, Tarquinio KM, et al. Nanotechnology: pediatric applications[J]. Pediatr Res, 2010, 67(5):500-504.
[28] Katsikogianni MG, Missirlis YF. Interactions of bacteria with specific biomaterial surface chemistries under flow conditions[J]. Acta Biomater, 2010, 6(3):1107-1118.
[29] Hori K, Matsumoto S. Bacterial adhesion: From mechanism to control[J]. Biochem Eng J, 2010, 48(3):424-434.
[30] Li YV, Cathles LM. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions[J]. J Colloid Interface Sci, 2014, 436:1-8.
[31] Dong X, McCoy E, Zhang M, et al. Inhibitory effects of nisin-coated multi-walled carbon nanotube sheet on biofilm formation from Bacillus anthracis spores [J]. J Environ Sci(China), 2014, 26(12):2526-2534.
[32] Pimentel-Filho Nde J, Martins MC, Nogueira GB, et al. Bovicin HC5 and nisin reduce Staphylococcus aureus adhesion to polystyrene and change the hydrophobicity profile and Gibbs free energy of adhesion[J]. Int J Food Microbiol, 2014, 190:1-8.
[33] Renner LD, Weibel DB. Physicochemical regulation of biofilm formation[J]. MRS Bull, 2011, 36(5):347-355.
[34] 刘音辰, 付东杰, 黄翠, 等. 含精氨酸的抗敏抛光膏对暴露牙本质表面变异链球菌黏附的影响[J]. 华西口腔医学杂志, 2013, 31(5):453-456.
Liu YC, Fu DJ, Huang C, et al. Effect of an argininecontaining polishing paste on Streptococcus mutans adhesion to exposed dentin surfaces[J]. West China J Stomatol, 2013, 31(5):453-456.
[35] Dorkhan M, Hall J, Uvdal P, et al. Crystalline anataserich titanium can reduce adherence of oral streptococci[J]. Biofouling, 2014, 30(6):751-759.
[36] Yumoto H, Hirota K, Hirao K, et al. Anti-inflammatory and protective effects of 2-methacryloyloxyethyl phosphorylcholine polymer on oral epithelial cells[J]. J Biomed Mater Res A, 2015, 103(2):555-563.
[37] 廖娟, 费伟, 郭俊, 等. 载银抗菌纯钛表面的制备及其抗菌性能的检测[J]. 华西口腔医学杂志, 2014, 32(3):303-305.
Liao J, Fei W, Guo J, et al. Preparation and antibacterial tests of silver-modified titanium surface[J]. West China J Stomatol, 2014, 32(3):303-305.
[38] 刘杰, 葛亚丽, 徐连立. 载银纳米二氧化钛树脂基托对变异链球菌和白色假丝酵母菌抗菌性的体外研究[J]. 华西口腔医学杂志, 2012, 30(2):201-205.
Liu J, Ge YL, Xu LL. Study of antibacterial effect of polymethyl methacrylate resin base containing Ag-TiO2 against Streptococcus mutans and Saccharomyces albicans in vitro[J]. West China J Stomatol, 2012, 30(2):201-205.
[39] Otsuka R, Imai S, Murata T, et al. Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation[J]. Microbiol Immunol, 2015, 59(1):28-36.
[40] 刘学军, 刘瑶, 梁晶, 等. 含碘的乳过氧化物酶-过氧化氢-硫氰化物系统对变异链球菌致龋性的影响[J]. 华西口腔医学杂志, 2014, 32(4):404-408. Liu XJ, Liu Y, Liang J, et al. In vitro study of the effect of a lactoperoxidase-peroxidase-thiocyanate system with iodine on the cariogenicinity of Streptococcus mutans[J]. West China J Stomatol, 2014, 32(4):404-408.
(本文采编 王晴)
[1] 刘世一, 陈中, 张素欣. 程序性死亡受体/配体免疫治疗策略在人乳头瘤病毒阳性头颈部鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 21-27.
[2] 余岳霖,孔卫东. 甲状旁腺激素受体1基因相关与原发性牙齿萌出障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 573-580.
[3] 李潭,梁新华. 盘状蛋白结构域受体1在调控恶性肿瘤进展和治疗中的作用[J]. 国际口腔医学杂志, 2023, 50(2): 230-236.
[4] 陈思婷,钟雄,孟文霞. Nod样受体家族嘌呤结构域3炎症小体在口腔黏膜病中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 471-475.
[5] 罗枭,蔡生青,石冰,李承浩. 2,3,7,8-四氯二苯二噁英诱导C57BL小鼠腭裂发病机制的研究[J]. 国际口腔医学杂志, 2022, 49(3): 317-323.
[6] 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355.
[7] 江涵,神应强,陈谦明. 毒蕈碱受体通过Yes相关蛋白信号对口腔鳞状细胞癌生物学行为的实验研究[J]. 国际口腔医学杂志, 2022, 49(2): 138-143.
[8] 安宁,李姣,梅志丹. 骨保护素/核因子-κB受体活化因子/核因子κB-受体活化因子配体信号分子调控牙萌出的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 116-120.
[9] 邓诗勇,宫苹,谭震. 脑和肌肉芳香烃受体核转运样蛋白1基因调控口腔及全身骨代谢的作用[J]. 国际口腔医学杂志, 2021, 48(2): 198-204.
[10] 付世锦,曾刊,李鑫,杨静,汪成林,叶玲. 骨保护素/核因子κB受体活化因子配体影响肺癌细胞下颌骨与股骨转移差异的初步研究[J]. 国际口腔医学杂志, 2020, 47(5): 538-546.
[11] 卢可心,张迪亚,吴燕岷. 蛋白酶激活受体在牙周组织细胞中相关作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 657-662.
[12] 王蕊,盖阔,刘梦齐,蒋丽. 原子力显微镜在细菌黏附力学研究中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 687-692.
[13] 王琳璇,王琦,赵云,米方林. 促红细胞生成素肝细胞激酶受体及其膜结合配体对牙槽骨改建作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 724-729.
[14] 冯旭,张祎,李梦红,刘楠,王六一,胡敏. 无托槽隐形矫治对牙周健康影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 166-170.
[15] 张勤,宫苹. 受体活性修饰蛋白1促进成骨作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 30-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .