国际口腔医学杂志 ›› 2014, Vol. 41 ›› Issue (4): 440-443.doi: 10.7518/gjkq.2014.04.017

• 综述 • 上一篇    下一篇

转化生长因子B3基因与腭融合

李丽 郑谦   

  1. 口腔疾病研究国家重点实验室 华西口腔医院唇腭裂外科(四川大学) 成都 610041
  • 收稿日期:2013-05-15 修回日期:2014-01-15 出版日期:2014-07-01 发布日期:2014-07-01
  • 通讯作者: 郑谦,教授,博士,Email:zq652@163.com
  • 作者简介:李丽,硕士,Email:li_li19860601@163.com
  • 基金资助:

    国家自然科学基金(81070498)

Transforming growth factor B3 in the development of palate

Li Li, Zheng Qian.   

  1. State Key Laboratory of Oral Diseases, Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2013-05-15 Revised:2014-01-15 Online:2014-07-01 Published:2014-07-01

摘要:

在腭发生过程中,腭突上皮(MEE)形成腭中缝(MES),而后MES裂解消失完成腭部融合,其中转化生长因子(TGF)B3在MES裂解过程中是不可缺少的。TGFB3调控MEE细胞发生上皮—间质转化(EMT)是目前MES 裂解机制研究的热点。TGFB3蛋白通过激活磷酸化的Smad2与Smad4复合体和磷脂酰肌醇-3-激酶(PI3K)信号转导通路,需要淋巴细胞样增强因子1和扭曲蛋白等多种信号转录因子及其他信号的协调配合调控腭部EMT过程。本文重点对TGFB3基因在MES裂解过程中的作用、其介导的信号通路及相关研究进展等作一综述。

关键词: 转化生长因子, 腭中缝, 上皮&mdash, 间质转化, 信号转导通路

Abstract:

During palatal fusion, the epithelium that covers the tip of opposing palatal shelves adheres, intercalates and thins into a single-layer medial edge seam(MES). The disintegration of the MES results in the confluence of the palatal mesenchyme. Transforming growth factor(TGF)B3 is essential for palate development, especially in the late phase of palatogenesis, in which the palatal MES disintegrates and mesenchymal confluence occurs. Regulation of medial-edge epithelium(MEE) cell completion of the epithelial—mesenchymal transition(EMT) by TGFB3 has become the primary concern of the fate of MEE cells. TGFB3 activates the transcription complexes of Smad2, Smad4, phosphatidylinositol- 3-kinase, Lef1, Twist, and other transcription factors to regulate the palatal EMT program. The function of TGFB3 gene in the MES disintegration process, associated mediated signal transduction pathways, and related research progress are summarized in this paper.

Key words: signal transduction pathway, transforming growth factor, medial edge seam, epithelial—mesenchymal transition

中图分类号: 

  • Q 786
[1] 熊梦琳,吴龙,马丽,赵今. 转化生长因子-β2促进牙髓干细胞增殖和分化的作用研究[J]. 国际口腔医学杂志, 2021, 48(6): 635-639.
[2] 吴南,李斌. 吡咯喹啉醌对舌鳞状细胞癌细胞上皮间质转化的抑制作用研究[J]. 国际口腔医学杂志, 2020, 47(4): 406-412.
[3] 朱明静,张清彬. 生长因子诱导间充质干细胞三维体外软骨形成的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 270-277.
[4] 杨亚,陈鹏,戴红卫,张林. 大鼠正畸牙移动过程中转化生长因子-β/Smad信号通路相关蛋白质在Malassez上皮剩余细胞的表达变化[J]. 国际口腔医学杂志, 2019, 46(3): 270-276.
[5] 田江雪,莫龙义,贾小玥,刘程程,徐欣. 转化生长因子β在牙周炎发生发展中的作用及其机制[J]. 国际口腔医学杂志, 2018, 45(5): 553-559.
[6] 刘润恒,刘于冬,陈卓凡. 微小RNA在骨分化过程中的作用机制[J]. 国际口腔医学杂志, 2017, 44(1): 108-113.
[7] 胥欣 王艳民 白丁. 沉默交配型信息调节因子2同源蛋白1与骨和软骨代谢的关系[J]. 国际口腔医学杂志, 2016, 43(5): 569-572.
[8] 陈尽欢,孙建勋,陈新梅. 转化生长因子-β超家族成员在牙本质发生发育中的作用[J]. 国际口腔医学杂志, 2016, 43(4): 477-481.
[9] 陈甜,白丁. 骨硬化蛋白对牙骨质形成的影响及其机制[J]. 国际口腔医学杂志, 2016, 43(3): 333-337.
[10] 林颖,秦伟,邹瑞,林正梅. 促丝裂原激活蛋白激酶在牙髓干细胞向成牙本质细胞分化和牙髓损伤修复中的作用[J]. 国际口腔医学杂志, 2016, 43(3): 343-347.
[11] 徐巾诏1 蓝菁2 汲平2. 卷曲蛋白在无翅型小鼠乳房肿瘤病毒整合位点家族-卷曲蛋白信号转导通路中的作用[J]. 国际口腔医学杂志, 2016, 43(1): 85-.
[12] 程群,杨明华,陈斌,刘娟,闫福华. Er:YAG激光对人牙周膜细胞增殖和迁移的影响[J]. 国际口腔医学杂志, 2015, 42(2): 135-139.
[13] 柳毅 陈建治. 三七总皂苷及其诱导成骨的试验和机制[J]. 国际口腔医学杂志, 2015, 42(1): 75-78.
[14] 钟文群,陈刚,赵怡芳. 转化生长因子β信号转导通路及其对血管内皮和平滑肌及基膜的调控[J]. 国际口腔医学杂志, 2014, 41(6): 720-724.
[15] 董书侠 郑谦. 重组人转化生长因子β3在瘢痕预防中的作用[J]. 国际口腔医学杂志, 2014, 41(2): 220-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .