国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (5): 600-608.doi: 10.7518/gjkq.2021082

• 综述 • 上一篇    下一篇

正畸治疗中牙槽骨骨开窗骨开裂的预防和应对策略

周梦琪(),陈学鹏,傅柏平()   

  1. 浙江大学医学院附属口腔医院·浙江大学口腔医学院·浙江省口腔疾病临床医学研究中心·浙江省 口腔生物医学研究重点实验室·浙江大学癌症研究院 杭州 310006
  • 收稿日期:2020-11-10 修回日期:2021-04-23 出版日期:2021-09-01 发布日期:2021-09-10
  • 通讯作者: 傅柏平
  • 作者简介:周梦琪,学士,Email: 21818689@zju.edu.cn
  • 基金资助:
    浙江省自然科学基金(LY18H140001)

Strategies for preventing alveolar-bone dehiscence and fenestration during orthodontic treatment

Zhou Mengqi(),Chen Xuepeng,Fu Baiping()   

  1. Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
  • Received:2020-11-10 Revised:2021-04-23 Online:2021-09-01 Published:2021-09-10
  • Contact: Baiping Fu
  • Supported by:
    Zhejiang Provincial Natural Science Foundation of China(LY18H140001)

摘要:

天然牙列中牙槽骨骨开窗和骨开裂有较高的发生率,其分布位置、发生频率与错𬌗畸形的类型相关。锥形束计算机断层扫描(CBCT)对骨开窗和骨开裂具有一定的诊断价值。正畸治疗可能引起骨开窗和骨开裂,这与患者本身牙槽骨解剖情况、牙齿位置和矫治方式有关。临床医生应把握正畸治疗的界限,选择合适的正畸方式将有助于预防正畸过程中骨开窗、骨开裂的发生。此外,牙周加速成骨正畸技术的应用对牙槽骨骨开窗和骨开裂也有一定的预防和治疗作用。目前,引导骨组织再生术对骨开窗、骨开裂具有治疗作用,自体牙骨移植材料和组织工程技术未来也有望应用于骨开窗和骨开裂的治疗。本文就正畸治疗中牙槽骨骨开窗、骨开裂的预防和应对策略进行综述。

关键词: 骨开窗, 骨开裂, 锥形束计算机断层扫描, 正畸治疗, 牙周加速成骨正畸

Abstract:

Alveolar bone dehiscence and fenestration have high incidence in natural dentition, and their distribution and frequency are related to the malocclusion type. Cone beam computed tomography has a certain value in the diagnosis of dehiscence and fenestration. Dehiscence and fenestration can be caused by orthodontic treatment, which is related to the anatomy of patient’s alveolar bone, dental position, and treatment style. Clinical orthodontists should focus on the boun-dary of orthodontic treatment and select the appropriate orthodontic method, which can help prevent the occurrence of dehiscence and fenestration in orthodontic treatment. The application of periodontally accelerated osteogenic orthodontics can also prevent and treat alveolar bone dehiscence and fenestration. At present, guided bone regeneration also exerts a certain curative effect, whereas autogenous-tooth bone-graft material and tissue-engineering technology are expected to be applied to the treatment of dehiscence and fenestration in the future. This article reviews the strategies for preventing alveolar-bone dehiscence and fenestration during orthodontic treatment.

Key words: dehiscence, fenestration, cone beam computed tomography, orthodontic treatment, periodontally accelerated osteogenic orthodontics

中图分类号: 

  • R783.5
[1] 邓建清, 吴莉萍. 骨开窗和骨开裂与正畸治疗[J]. 临床口腔医学杂志, 2016, 32(7):445-447.
Deng JQ, Wu LP. Alveolar bone dehiscence and fenestration and orthodontic treatment[J]. J Clin Sto-matol, 2016, 32(7):445-447.
[2] Löst C. Depth of alveolar bone dehiscences in relation to gingival recessions[J]. J Clin Periodontol, 1984, 11(9):583-589.
pmid: 6593330
[3] Sendyk M, Linhares DS, Pannuti CM, et al. Effect of orthodontic treatment on alveolar bone thickness in adults: a systematic review[J]. Dental Press J Orthod, 2019, 24(4):34-45.
doi: 10.1590/2177-6709.24.4.034-045.oar
[4] Gorbunkova A, Pagni G, Brizhak A, et al. Impact of orthodontic treatment on periodontal tissues: a narrative review of multidisciplinary literature[J]. Int J Dent, 2016, 2016:4723589.
doi: 10.1155/2016/4723589 pmid: 26904120
[5] Evangelista K, Vasconcelos Kde F, Bumann A, et al. Dehiscence and fenestration in patients with ClassⅠand Class Ⅱ Division 1 malocclusion assessed with cone-beam computed tomography[J]. Am J Orthod Dentofacial Orthop, 2010, 138(2):133.e1-e7.
[6] Grimoud AM, Gibbon VE, Ribot I. Predictive factors for alveolar fenestration and dehiscence[J]. Homo, 2017, 68(3):167-175.
doi: S0018-442X(17)30016-1 pmid: 28483274
[7] Yagci A, Veli I, Uysal T, et al. Dehiscence and fenestration in skeletal Class Ⅰ, Ⅱ, and Ⅲ malocclusions assessed with cone-beam computed tomography[J]. Angle Orthod, 2012, 82(1):67-74.
doi: 10.2319/040811-250.1
[8] Enhos S, Uysal T, Yagci A, et al. Dehiscence and fenestration in patients with different vertical growth patterns assessed with cone-beam computed tomo-graphy[J]. Angle Orthod, 2012, 82(5):868-874.
doi: 10.2319/111211-702.1
[9] Porto OCL, Silva BSF, Silva JA, et al. CBCT assessment of bone thickness in maxillary and mandibular teeth: an anatomic study[J]. J Appl Oral Sci, 2020, 28:e20190148.
doi: 10.1590/1678-7757-2019-0148
[10] Jin SH, Park JB, Kim N, et al. The thickness of alveolar bone at the maxillary canine and premolar teeth in normal occlusion[J]. J Periodontal Implant Sci, 2012, 42(5):173-178.
doi: 10.5051/jpis.2012.42.5.173
[11] Pilloni A, Rotundo R, Gambarini G, et al. Bone dehiscences and fenestrations of the anterior mandibular facial bone wall: a retrospective cone beam computed tomography study[J]. Minerva Stomatol, 2018, 67(3):86-95.
doi: 10.23736/S0026-4970.18.04099-2 pmid: 29431347
[12] 周琳, 李巍然. 锥形束CT在评价双颌前突患者前牙区牙槽骨缺损中的应用[J]. 北京大学学报(医学版), 2015, 47(3):514-520.
Zhou L, Li WR. Evaluation of alveolar bone defects on anterior region in patients with bimaxillary protru-sion by using cone-beam CT[J]. J Peking Univ (Health Sci), 2015, 47(3):514-520.
[13] 孙良, 王博, 房兵. 骨性Ⅲ类错𬌗前牙区牙槽骨开裂和牙槽骨开窗发生率的锥形束CT研究[J]. 上海口腔医学, 2013,22(4):418-422.
Sun LY, Wang B, Fang B. The prevalence of dehis-cence and fenestration on anterior region of skeletal Class Ⅲ malocclusions: a cone-beam CT study[J]. Shanghai J Stomatol, 2013,22(4):418-422.
[14] Hu X, Huang X, Gu Y. Assessment of buccal and lingual alveolar bone thickness and buccolingual inclination of maxillary posterior teeth in patients with severe skeletal Class Ⅲ malocclusion with man-dibular asymmetry[J]. Am J Orthod Dentofacial Orthop, 2020, 157(4):503-515.
doi: 10.1016/j.ajodo.2019.04.036
[15] Choi JY, Chaudhry K, Parks E, et al. Prevalence of posterior alveolar bony dehiscence and fenestration in adults with posterior crossbite: a CBCT study[J]. Prog Orthod, 2020, 21(1):8.
doi: 10.1186/s40510-020-00308-6
[16] Coşkun İ, Kaya B. Relationship between alveolar bone thickness, tooth root morphology, and sagittal skeletal pattern: a cone beam computed tomography study[J]. J Orofac Orthop, 2019, 80(3):144-158.
doi: 10.1007/s00056-019-00175-9 pmid: 30980091
[17] Eraydın F, Germec-Cakan D, Tozlu M, et al. Three-dimensional evaluation of alveolar bone thickness of mandibular anterior teeth in different dentofacial types[J]. Niger J Clin Pract, 2018, 21(4):519-524.
doi: 10.4103/njcp.njcp_90_17 pmid: 29607868
[18] Leung CC, Palomo L, Griffith R, et al. Accuracy and reliability of cone-beam computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations[J]. Am J Orthod Dentofacial Orthop, 2010, 137(4 Suppl):S109-S119.
doi: 10.1016/j.ajodo.2009.07.013
[19] Peterson AG, Wang M, Gonzalez S, et al. An in vivo and cone beam computed tomography investigation of the accuracy in measuring alveolar bone height and detecting dehiscence and fenestration defects[J]. Int J Oral Maxillofac Implants, 2018, 33(6):1296-1304.
doi: 10.11607/jomi.6633 pmid: 30427960
[20] Kolsuz ME, Bagis N, Orhan K, et al. Comparison of the influence of FOV sizes and different voxel resolutions for the assessment of periodontal defects[J]. Dentomaxillofac Radiol, 2015, 44(7):20150070.
doi: 10.1259/dmfr.20150070
[21] Bagis N, Eren H, Kolsuz ME, et al. Comparison of the burr and chemically induced periodontal defects using different field-of-view sizes and voxel resolutions[J]. Oral Surg Oral Med Oral Pathol Oral Ra-diol, 2018, 125(3):260-267.
[22] 徐筱, 徐莉, 江久汇, 等. 锥形束CT评判安氏Ⅲ类错𬌗上前牙骨开裂与骨开窗的准确性分析[J]. 北京大学学报(医学版), 2018,50(1):104-109.
Xu X, Xu L, Jiang JH, et al. Accuracy analysis of alveolar dehiscence and fenestration of maxillary anterior teeth of Angle class Ⅲ by cone-beam CT[J]. J Peking Univ (Health Sci), 2018,50(1):104-109.
[23] Sun L, Zhang L, Shen G, et al. Accuracy of cone-beam computed tomography in detecting alveolar bone dehiscences and fenestrations[J]. Am J Orthod Dentofacial Orthop, 2015, 147(3):313-323.
doi: 10.1016/j.ajodo.2014.10.032
[24] Sheng Y, Guo HM, Bai YX, et al. Dehiscence and fenestration in anterior teeth: comparison before and after orthodontic treatment[J]. J Orofac Orthop, 2020, 81(1):1-9.
doi: 10.1007/s00056-019-00196-4 pmid: 31646344
[25] Garlock DT, Buschang PH, Araujo EA, et al. Evaluation of marginal alveolar bone in the anterior mandible with pretreatment and posttreatment computed tomography in nonextraction patients[J]. Am J Orthod Dentofacial Orthop, 2016, 149(2):192-201.
doi: 10.1016/j.ajodo.2015.07.034
[26] Handelman CS. The anterior alveolus: its importan-ce in limiting orthodontic treatment and its influence on the occurrence of iatrogenic sequelae[J]. Angle Orthod, 1996, 66(2):95-109.
pmid: 8712499
[27] Gracco A, Lombardo L, Mancuso G, et al. Upper incisor position and bony support in untreated patients as seen on CBCT[J]. Angle Orthod, 2009, 79(4):692-702.
doi: 10.2319/081908-437.1
[28] Domingo-Clérigues M, Montiel-Company JM, Almerich-Silla JM, et al. Changes in the alveolar bone thickness of maxillary incisors after orthodontic treatment involving extractions-a systematic review and meta-analysis[J]. J Clin Exp Dent, 2019, 11(1):e76-e84.
[29] Allais D, Melsen B. Does labial movement of lower incisors influence the level of the gingival margin? A case-control study of adult orthodontic patients[J]. Eur J Orthod, 2003, 25(4):343-352.
doi: 10.1093/ejo/25.4.343
[30] Baysal A, Uysal T, Veli I, et al. Evaluation of alveolar bone loss following rapid maxillary expansion using cone-beam computed tomography[J]. Korean J Orthod, 2013, 43(2):83-95.
doi: 10.4041/kjod.2013.43.2.83 pmid: 23671833
[31] Akin M, Baka ZM, Ileri Z, et al. Alveolar bone changes after asymmetric rapid maxillary expansion[J]. Angle Orthod, 2015, 85(5):799-805.
doi: 10.2319/090214.1
[32] Camps-Perepérez I, Guijarro-Martínez R, Peiró-Guijarro MA, et al. The value of cone beam computed tomography imaging in surgically assisted rapid pa-latal expansion: a systematic review of the literature[J]. Int J Oral Maxillofac Surg, 2017, 46(7):827-838.
doi: 10.1016/j.ijom.2017.01.017
[33] Vardimon AD, Oren E, Ben-Bassat Y. Cortical bone remodeling/tooth movement ratio during maxillary incisor retraction with tip versus torque movements[J]. Am J Orthod Dentofacial Orthop, 1998, 114(5):520-529.
doi: 10.1016/S0889-5406(98)70172-6
[34] Proffit WR, Fields HW, Sarver DM. Contemporary orthodontics[M]. 5th ed. St. Louis: CVMosby, 2014.
[35] Cassidy SE, Jackson SR, Turpin DL, et al. Classification and treatment of Class Ⅱ subdivision malocclusions[J]. Am J Orthod Dentofacial Orthop, 2014, 145(4):443-451.
doi: 10.1016/j.ajodo.2013.12.017
[36] 赵志河, 李雪. 正畸边缘病例矫治思考[J]. 中国实用口腔科杂志, 2013, 6(2):65-70.
Zhao ZH, Li X. Thinking of treatment for orthodontic borderline cases[J]. Chin J Pract Stomatol, 2013, 6(2):65-70.
[37] Kerr WJ, Miller S, Dawber JE. Class Ⅲ malocclusion: surgery or orthodontics[J]. Br J Orthod, 1992, 19(1):21-24.
pmid: 1562575
[38] Morais JF, Melsen B, de Freitas KMS, et al. Evaluation of maxillary buccal alveolar bone before and after orthodontic alignment without extractions: a cone beam computed tomographic study[J]. Angle Orthod, 2018, 88(6):748-756.
doi: 10.2319/101117-686.1
[39] Zhang F, Lee SC, Lee JB, et al. Geometric analysis of alveolar bone around the incisors after anterior retraction following premolar extraction[J]. Angle Orthod, 2020, 90(2):173-180.
doi: 10.2319/041419-266.1 pmid: 31769701
[40] 曹显, 郑欣欣, 金幼虹, 等. 正畸治疗策略中牙周支持组织改建的风险考量[J]. 中华口腔医学杂志, 2020, 55(4):271-275.
Cao X, Zheng XX, Jin YH, et al. Risk conside-rations of periodontal tissues reconstructions in the strategies of orthodontic treatment[J]. Chin J Sto-matol, 2020, 55(4):271-275.
[41] 孙留振. 长牵引钩对上颌中切牙控根效果的临床研究[J]. 临床口腔医学杂志, 2019, 35(5):290-293.
Sun LZ. A clinical study on the effect of root-controlling over upper incisor teeth with long trac-tion hook[J]. J Clin Stomatol, 2019, 35(5):290-293.
[42] 秦燕军, 顾月光, 刘可, 等. 控根辅弓对上颌切牙转矩疗效的临床研究[J]. 实用口腔医学杂志, 2014, 30(6):787-791.
Qin YJ, Gu YG, Liu K, et al. A clinical study on the effect of maxillary incisor torque with controlling root auxiliary arch[J]. J Pract Stomatol, 2014, 30(6):787-791.
[43] Li J, Zhao Y, Li H, et al. Effects of force magnitude on torque control in the correction of bimaxillary protrusion with mass retraction[J]. J Orthod Sci, 2018, 7:13.
doi: 10.4103/jos.JOS_65_17
[44] Garib DG, Henriques JF, Janson G, et al. Periodontal effects of rapid maxillary expansion with tooth-tissue-borne and tooth-borne expanders: a computed tomography evaluation[J]. Am J Orthod Dentofacial Orthop, 2006, 129(6):749-758.
doi: 10.1016/j.ajodo.2006.02.021
[45] Kılıç N, Kiki A, Oktay H. A comparison of dentoalveolar inclination treated by two palatal expanders[J]. Eur J Orthod, 2008, 30(1):67-72.
doi: 10.1093/ejo/cjm099
[46] Lemos Rinaldi MR, Azeredo F, Martinelli de Lima E, et al. Cone-beam computed tomography evaluation of bone plate and root length after maxillary expansion using tooth-borne and tooth-tissue-borne banded expanders[J]. Am J Orthod Dentofacial Orthop, 2018, 154(4):504-516.
doi: 10.1016/j.ajodo.2017.12.018
[47] Copello FM, Marañón-Vásquez GA, Brunetto DP, et al. Is the buccal alveolar bone less affected by mini-implant assisted rapid palatal expansion than by conventional rapid palatal expansion? -A syste-matic review and meta-analysis[J]. Orthod Craniofac Res, 2020, 23(3):237-249.
doi: 10.1111/ocr.v23.3
[48] Moon HW, Kim MJ, Ahn HW, et al. Molar inclination and surrounding alveolar bone change relative to the design of bone-borne maxillary expanders: a CBCT study[J]. Angle Orthod, 2020, 90(1):13-22.
doi: 10.2319/050619-316.1
[49] LaBlonde B, Vich ML, Edwards P, et al. Three dimensional evaluation of alveolar bone changes in response to different rapid palatal expansion activation rates[J]. Dental Press J Orthod, 2017, 22(1):89-97.
doi: S2176-94512017000100089 pmid: 28444010
[50] Wilcko WM, Wilcko T, Bouquot JE, et al. Rapid orthodontics with alveolar reshaping: two case reports of decrowding[J]. Int J Periodontics Restorative Dent, 2001, 21(1):9-19.
[51] Murphy KG, Wilcko MT, Wilcko WM, et al. Perio-dontal accelerated osteogenic orthodontics: a descri-ption of the surgical technique[J]. J Oral Maxillofac Surg, 2009, 67(10):2160-2166.
doi: 10.1016/j.joms.2009.04.124
[52] Kim SH, Kim I, Jeong DM, et al. Corticotomy-assisted decompensation for augmentation of the mandibular anterior ridge[J]. Am J Orthod Dentofacial Orthop, 2011, 140(5):720-731.
doi: 10.1016/j.ajodo.2009.12.040
[53] Wang CW, Yu SH, Mandelaris GA, et al. Is perio-dontal phenotype modification therapy beneficial for patients receiving orthodontic treatment? An American Academy of Periodontology best evidence review[J]. J Periodontol, 2020, 91(3):299-310.
doi: 10.1002/jper.v91.3
[54] Brugnami F, Caiazzo A, Mehra P. Can corticotomy (with or without bone grafting) expand the limits of safe orthodontic therapy[J]. J Oral Biol Craniofac Res, 2018, 8(1):1-6.
doi: 10.1016/j.jobcr.2017.11.001
[55] Wang B, Shen G, Fang B, et al. Augmented cortico-tomy-assisted presurgical orthodontics of Class Ⅲ malocclusions: a cephalometric and cone-beam com-puted tomography study[J]. J Craniofac Surg, 2013, 24(6):1886-1890.
doi: 10.1097/SCS.0b013e3182a245b3 pmid: 24220368
[56] Ahn HW, Seo DH, Kim SH, et al. Morphologic eva-luation of dentoalveolar structures of mandibular anterior teeth during augmented corticotomy-assisted decompensation[J]. Am J Orthod Dentofacial Orthop, 2016, 150(4):659-669.
doi: 10.1016/j.ajodo.2016.03.027
[57] Chackartchi T, Barkana I, Klinger A. Alveolar bone morphology following periodontally accelerated osteogenic orthodontics: a clinical and radiographic a-nalysis[J]. Int J Periodontics Restorative Dent, 2017, 37(2):203-208.
doi: 10.11607/prd.2723 pmid: 28196159
[58] Garcia J, Dodge A, Luepke P, et al. Effect of membrane exposure on guided bone regeneration: a systematic review and meta-analysis[J]. Clin Oral Implants Res, 2018, 29(3):328-338.
[59] Elgali I, Omar O, Dahlin C, et al. Guided bone regeneration: materials and biological mechanisms revisited[J]. Eur J Oral Sci, 2017, 125(5):315-337.
doi: 10.1111/eos.2017.125.issue-5
[60] Rosen PS, Reynolds MA. Guided bone regeneration for dehiscence and fenestration defects on implants using an absorbable polymer barrier[J]. J Periodontol, 2001, 72(2):250-256.
pmid: 11288800
[61] Dahlin C, Lekholm U, Becker W, et al. Treatment of fenestration and dehiscence bone defects around oral implants using the guided tissue regeneration technique: a prospective multicenter study[J]. Int J Oral Maxillofac Implants, 1995, 10(3):312-318.
[62] Sun L, Yuan L, Wang B, et al. Changes of alveolar bone dehiscence and fenestration after augmented corticotomy-assisted orthodontic treatment: a CBCT evaluation[J]. Prog Orthod, 2019, 20(1):7.
doi: 10.1186/s40510-019-0259-z
[63] 束蓉. 正畸治疗与牙周软组织增量[J]. 中华口腔医学杂志, 2020, 55(7):444-447.
Shu R. Orthodontic treatment and periodontal soft tissue augmentation[J]. Chin J Stomatol, 2020, 55(7):444-447.
[64] Kim DM, Neiva R. Periodontal soft tissue non-root coverage procedures: a systematic review from the AAP Regeneration Workshop[J]. J Periodontol, 2015, 86(2 Suppl):S56-S72.
doi: 10.1902/jop.2015.130684
[65] 李冀寅, 贺平. 自体牙骨移植材料在牙槽骨缺损修复中的应用进展[J]. 口腔医学研究, 2019, 35(3):212-214.
Li JY, He P. Clinical application progress of auto-genous tooth bone graft material in repairing al-veolar bone defect[J]. J Oral Sci Res, 2019, 35(3):212-214.
[66] Wu D, Zhou L, Lin J, et al. Immediate implant placement in anterior teeth with grafting material of autogenous tooth bone vs xenogenic bone[J]. BMC Oral Health, 2019, 19(1):266.
doi: 10.1186/s12903-019-0970-7
[67] Pang KM, Um IW, Kim YK, et al. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect: a prospective randomized clinical trial in comparison with a-norganic bovine bone[J]. Clin Oral Implants Res, 2017, 28(7):809-815.
doi: 10.1111/clr.2017.28.issue-7
[68] Lindroos B, Mäenpää K, Ylikomi T, et al. Characte-risation of human dental stem cells and buccal mucosa fibroblasts[J]. Biochem Biophys Res Commun, 2008, 368(2):329-335.
doi: 10.1016/j.bbrc.2008.01.081
[69] Thrivikraman G, Athirasala A, Twohig C, et al. Biomaterials for craniofacial bone regeneration[J]. Dent Clin North Am, 2017, 61(4):835-856.
doi: S0011-8532(17)30069-1 pmid: 28886771
[1] 刘盼明,李政泽,李军鹤,崔淑霞. 成人骨性Ⅱ类患者不同垂直骨面型上颌窦容积及口咽气道体积的锥形束计算机断层扫描研究[J]. 国际口腔医学杂志, 2023, 50(5): 528-537.
[2] 蒋青松,赖文莉,王艳. 骨增量技术在口腔正畸领域的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 243-250.
[3] 王启秋,支清惠. 釉质白垩斑治疗方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 717-723.
[4] 刘力嘉,毛婧,龙欢,蒲亚龙,王军. 二维与三维头影测量自动定点的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 100-108.
[5] 伍春兰,唐华,陈军. 成人骨性Ⅱ类高角开牙合患者上下切牙区牙槽骨形态的三维研究[J]. 国际口腔医学杂志, 2021, 48(4): 426-432.
[6] 王立冬,马文,付帅,张长彬,崔庆赢,梁燕,黎明. 不同方法制作正颌手术数字化牙合板的研究及精确性分析[J]. 国际口腔医学杂志, 2021, 48(2): 156-164.
[7] 刘玲,龚仁国,董秀华,刘入梦. 正畸联合双颌手术治疗前牙区严重骨性开长期稳定性的Meta分析[J]. 国际口腔医学杂志, 2021, 48(2): 173-179.
[8] 张紫涵,熊鑫,王军. 三维头影测量的研究现状和应用发展[J]. 国际口腔医学杂志, 2020, 47(6): 739-744.
[9] 赵玉洁,管晓燕,李小兰,陈琦君,王倩,刘建国. 巨噬细胞极化参与正畸牙移动的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 478-483.
[10] 陈艺尹,刘俊圻,李承浩. 牙槽突裂的裂隙特点及正畸治疗对唇腭裂患者牙槽突植骨术的影响[J]. 国际口腔医学杂志, 2020, 47(3): 345-350.
[11] 李寒月,夏露露,华先明. 牙周加速成骨正畸临床应用效果的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 206-211.
[12] 陈玉,姜欢,刘楠,陆晨萌,唐中元,韩茹钰,胡敏. 正畸治疗对骨性Ⅱ类错畸形患者上气道及周围结构变化的影响[J]. 国际口腔医学杂志, 2019, 46(5): 578-584.
[13] 高洁,马锐,葛振林. 热激活镍钛弓丝矫治效率的系统评价[J]. 国际口腔医学杂志, 2019, 46(4): 393-399.
[14] 何育薇,张智君,谢雨朗,梁英豪. 青少年正畸患者的心理状况研究[J]. 国际口腔医学杂志, 2019, 46(4): 413-419.
[15] 刘晓华, 王恩博. 儿童埋伏多生牙拔除术锥形束计算机断层扫描影像学定位的应用进展[J]. 国际口腔医学杂志, 2018, 45(3): 295-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .