国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (4): 485-490.doi: 10.7518/gjkq.2021066

• 综述 • 上一篇    下一篇

提高氧化锆陶瓷粘接性能新技术的研究进展

黎敏(),华成舸,蒋丽()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院全科门诊 成都 610041
  • 收稿日期:2021-01-03 修回日期:2021-03-25 出版日期:2021-07-01 发布日期:2021-06-30
  • 通讯作者: 蒋丽
  • 作者简介:黎敏,住院医师,学士,Email: 417597723@qq.com
  • 基金资助:
    四川大学华西口腔医院科研项目(LCYJ2019-7)

Research progress on new technology for improving adhesion properties of zirconia ceramics

Li Min(),Hua Chengge,Jiang Li()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-01-03 Revised:2021-03-25 Online:2021-07-01 Published:2021-06-30
  • Contact: Li Jiang

摘要:

随着氧化锆陶瓷的广泛应用,氧化锆陶瓷的粘接问题一直是研究热点。本文就近年来研究的几种提高氧化锆陶瓷粘接性能的技术,从3个方面来进行综述:物理处理改变氧化锆的表面形貌;化学涂层提高氧化锆的表面性能;表面清洁去除唾液等污染。在传统处理方式的基础上,总结几项研究比较热门的表面处理方式,从技术原理、临床应用等方面进行阐述,为提高氧化锆陶瓷的粘接性能提供理论基础。

关键词: 氧化锆陶瓷, 粘接性能, 表面处理, 涂层, 表面清洁

Abstract:

With the wide application of zirconia ceramics, the bonding of zirconia ceramics has always been a research hotspot. In this paper, several technologies to improve the bonding properties of zirconia ceramics studied in recent years are reviewed from three aspects, the surface morphology of zirconia changed by physical treatment, the surface performance of zirconia improved by chemical coating, and saliva and other pollution removed by surface cleaning. On the basis of traditional treatment methods, several popular surface treatment methods are summarized and illustrated from the aspects of technical principle and clinical application, so as to provide a theoretical basis for improving the bonding properties of zirconia ceramics.

Key words: zirconia ceramics, adhesive properties, surface treatment, coating, surface cleaning

中图分类号: 

  • R783.1
[1] Bona AD, Pecho OE, Alessandretti R. Zirconia as a dental biomaterial[J]. Materials (Basel), 2015,8(8):4978-4991.
doi: 10.3390/ma8084978
[2] Guazzato M, Albakry M, Ringer SP, et al. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part Ⅱ. Zirconia-based dental ceramics[J]. Dent Mater, 2004,20(5):449-456.
doi: 10.1016/j.dental.2003.05.002
[3] Özcan M, Bernasconi M. Adhesion to zirconia used for dental restorations: a systematic review and Meta-analysis[J]. J Adhes Dent, 2015,17(1):7-26.
[4] Moon JE, Kim SH, Lee JB, et al. Effects of airborne-particle abrasion protocol choice on the surface characteristics of monolithic zirconia materials and the shear bond strength of resin cement[J]. Ceram Int, 2016,42(1):1552-1562.
doi: 10.1016/j.ceramint.2015.09.104
[5] Gomes AL, Castillo-Oyagüe R, Lynch CD, et al. Influence of sandblasting granulometry and resin cement composition on microtensile bond strength to zirconia ceramic for dental prosthetic frameworks[J]. J Dent, 2013,41(1):31-41.
doi: 10.1016/j.jdent.2012.09.013
[6] Komine F, Fushiki R, Koizuka M, et al. Effect of surface treatment on bond strength between an indirect composite material and a zirconia framework[J]. J Oral Sci, 2012,54(1):39-46.
doi: 10.2334/josnusd.54.39
[7] Shimoe S, Peng TY, Otaku M, et al. Influence of various airborne-particle abrasion conditions on bonding between zirconia ceramics and an indirect composite resin material[J]. J Prosthet Dent, 2019,122(5): 491.e1-491. e9.
[8] Inokoshi M, Shimizu H, Nozaki K, et al. Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia[J]. Dent Mater, 2018,34(3):508-518.
doi: S0109-5641(17)30620-6 pmid: 29325861
[9] Ali N, Safwat A, Aboushelib M. The effect of fusion sputtering surface treatment on microshear bond strength of zirconia and MDP-containing resin cement[J]. Dent Mater, 2019, 35(6): e107-e112
[10] Aboushelib MN, Ragab H, Arnaot M. Ultrastructural analysis and long-term evaluation of composite-zirconia bond strength[J]. J Adhes Dent, 2018,20(1):33-39.
doi: 10.3290/j.jad.a39962 pmid: 29507918
[11] Wattanasirmkit K, Charasseangpaisarn T. Effect of different cleansing agents and adhesive resins on bond strength of contaminated zirconia[J]. J Prosthodont Res, 2019,63(3):271-276.
doi: S1883-1958(18)30220-2 pmid: 30704931
[12] Çakırbay Tanış M, Akay C, Şen M. Effect of selective infiltration etching on the bond strength between zirconia and resin luting agents[J]. J Esthet Restor Dent, 2019,31(3):257-262.
doi: 10.1111/jerd.12441 pmid: 30565846
[13] Salem R, Naggar GE, Aboushelib M, et al. Microtensile bond strength of resin-bonded hightranslucency zirconia using different surface treatments[J]. J Adhes Dent, 2016,18(3):191-196.
[14] Usumez A, Hamdemirci N, Koroglu BY, et al. Bond strength of resin cement to zirconia ceramic with different surface treatments[J]. Lasers Med Sci, 2013,28(1):259-266.
doi: 10.1007/s10103-012-1136-x
[15] Paranhos MP, Burnett LH Jr, Magne P. Effect of Nd: YAG Laser and CO2 laser treatment on the resin bond strength to zirconia ceramic[J]. Quintessence Int, 2011,42(1):79-89.
[16] Al-Aali KA. Effect of phototherapy on shear bond strength of resin cements to zirconia ceramics: a systematic review and Meta-analysis of in-vitro studies[J]. Photodiagnosis Photodyn Ther, 2018,23:58-62.
doi: 10.1016/j.pdpdt.2018.05.006
[17] Tokar E, Polat S, Ozturk C. Repair bond strength of composite to Er, Cr: YSGG laser irradiated zirconia and porcelain surfaces[J]. Biomed J, 2019,42(3):193-199.
doi: S2319-4170(17)30380-3 pmid: 31466713
[18] Turp V, Akgungor G, Sen D, et al. Evaluation of surface topography of zirconia ceramic after Er: YAG laser etching[J]. Photomed Laser Surg, 2014,32(10):533-539.
doi: 10.1089/pho.2014.3730
[19] Schelle F, Polz S, Haloui H, et al. Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials[J]. Lasers Med Sci, 2014,29(6):1775-1783.
doi: 10.1007/s10103-013-1315-4
[20] Vicente Prieto M, Gomes ALC, Montero Martín J, et al. The effect of femtosecond laser treatment on the effectiveness of resin-zirconia adhesive: an in vitro study[J]. J Lasers Med Sci, 2016,7(4):214-219.
doi: 10.15171/jlms.2016.38 pmid: 28491255
[21] Abu Ruja M, De Souza GM, Finer Y. Ultrashort-pulse laser as a surface treatment for bonding between zirconia and resin cement[J]. Dent Mater, 2019,35(11):1545-1556.
doi: 10.1016/j.dental.2019.07.009
[22] Chen Y, Lu ZC, Qian MK, et al. Chemical affinity of 10-methacryloyloxydecyl dihydrogen phosphate to dental zirconia: effects of molecular structure and solvents[J]. Dent Mater, 2017,33(12):e415-e427.
doi: 10.1016/j.dental.2017.09.013
[23] Lima RBW, Barreto SC, Alfrisany NM, et al. Effect of silane and MDP-based primers on physicochemical properties of zirconia and its bond strength to resin cementp[J]. Dent Mater, 2019,35(11):1557-1567.
doi: 10.1016/j.dental.2019.07.008
[24] Tanış MÇ, Akçaboy C. Effects of different surface treatment methods and MDP monomer on resin cementation of zirconia ceramics an in vitro study[J]. J Lasers Med Sci, 2015,6(4):174-181.
doi: 10.15171/jlms.2015.15
[25] Jiang T, Chen C, Lv P. Selective infiltrated etching to surface treat zirconia using a modified glass agent[J]. J Adhes Dent, 2014,16(6):553-557.
doi: 10.3290/j.jad.a33195 pmid: 25516878
[26] Liu MY, Zhou JF, Yang Y, et al. Surface modification of zirconia with polydopamine to enhance fibroblast response and decrease bacterial activity in vitro: a potential technique for soft tissue engineering applications[J]. Colloids Surf B Biointerfaces, 2015,136:74-83.
doi: 10.1016/j.colsurfb.2015.06.047
[27] Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007,318(5849):426-430.
doi: 10.1126/science.1147241
[28] 肖楠, 侯玉泽, 侯玉一. 聚多巴胺对氧化锆陶瓷粘接强度影响的研究[J]. 北京口腔医学, 2018,26(6):323-326.
Xiao N, Hou YZ, Hou YY. Effect of polydopamine on the shear bond strength of zirconia ceramics[J]. Beijing J Stomatol, 2018,26(6):323-326.
[29] Teng JL, Wang H, Liao YM, et al. Evaluation of a conditioning method to improve core-veneer bond strength of zirconia restorations[J]. J Prosthet Dent, 2012,107(6):380-387.
doi: 10.1016/S0022-3913(12)60095-X
[30] Farhan FA, Sulaiman E, Kutty MG. Effect of new zirconia surface coatings on the surface properties and bonding strength of veneering zirconia substrate[J]. Surf Coat Technol, 2018,333:247-258.
doi: 10.1016/j.surfcoat.2017.10.030
[31] Murakami T, Takemoto S, Nishiyama N, et al. Zirconia surface modification by a novel zirconia bonding system and its adhesion mechanism[J]. Dent Mater, 2017,33(12):1371-1380.
doi: 10.1016/j.dental.2017.09.001
[32] Han GJ, Kim JH, Cho BH, et al. Promotion of resin bonding to dental zirconia ceramic using plasma deposition of tetramethylsilane and benzene[J]. Eur J Oral Sci, 2017,125(1):81-87.
doi: 10.1111/eos.2017.125.issue-1
[33] Yoshida K, Sawase T. Influence of saliva contamination on resin bonding to zirconia[J]. Dent Mater, 2017,33:e84-e85.
[34] Valverde GB, Coelho PG, Janal MN, et al. Surface characterisation and bonding of Y-TZP following non-thermal plasma treatment[J]. J Dent, 2013,41(1):51-59.
doi: 10.1016/j.jdent.2012.10.002
[35] Bitencourt SB, Dos Santos DM, da Silva EVF, et al. Characterisation of a new plasma-enhanced film to improve shear bond strength between zirconia and veneering ceramic[J]. Mater Sci Eng C Mater Biol Appl, 2018,92:196-205.
doi: S0928-4931(17)33908-5 pmid: 30184742
[36] Valverde GB, Coelho PG, Janal MN, et al. Surface characterisation and bonding of Y-TZP following non-thermal plasma treatment[J]. J Dent, 2013,41(1):51-59.
doi: 10.1016/j.jdent.2012.10.002
[37] Piest C, Wille S, Strunskus T, et al. Efficacy of plasma treatment for decontaminating zirconia[J]. J Adhes Dent, 2018,20(4):289-297.
[38] 詹凌璐, 张玉玮, 郑苗, 等. 大气压冷等离子体处理提高氧化锆粘接性能[J]. 口腔颌面修复学杂志, 2019,20(1):3-8.
Zhan LL, Zhang YW, Zheng M, et al. Effects of different atmospheric pressure cold gas plasmas on bonding of zirconia[J]. Chin J Prosthodont, 2019,20(1):3-8.
[39] Chen MS, Zhang Y, Sky Driver M, et al. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush[J]. Dent Mater, 2013,29(8):871-880.
doi: 10.1016/j.dental.2013.05.002
[40] Güers P, Wille S, Strunskus T, et al. Durability of resin bonding to zirconia ceramic after contamination and the use of various cleaning methods[J]. Dent M-ater, 2019,35(10):1388-1396.
[1] 常欣楠,刘磊. 生物可降解镁基材料在颅颌面外科的应用及其研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 107-115.
[2] 孙旭,邓振南,文才,赵颖. Er: YAG激光照射种植体表面微形貌变化的扫描电子显微镜观察[J]. 国际口腔医学杂志, 2023, 50(6): 669-673.
[3] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[4] 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444.
[5] 侯晔坡,高杰. Er:YAG激光照射对牙科陶瓷材料粘接影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 68-72.
[6] 刘梦齐,盖阔,蒋丽. 抗菌性口腔种植材料的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 516-521.
[7] 邓雪阳,潘兰兰,胡婷,李文华,向学熔. 钛合金表面氧化石墨烯涂层的制备[J]. 国际口腔医学杂志, 2018, 45(5): 539-545.
[8] 张雅蓉, 刘洋, 张玲, 于海洋. 不同切端设计的上前牙瓷贴面受载能力的定量研究[J]. 国际口腔医学杂志, 2017, 44(3): 301-303.
[9] 姚陈敏, 周丽群, 黄翠. 前牙磨耗牙色修复材料的选择[J]. 国际口腔医学杂志, 2017, 44(3): 363-367.
[10] 赵夫健,王臻石,石连水. 托槽表面抗菌改性的研究现状[J]. 国际口腔医学杂志, 2016, 43(2): 239-243.
[11] 朱晓晶 王焱. 钛种植体表面共沉积钙磷-生物活性分子的研究进展[J]. 国际口腔医学杂志, 2014, 41(5): 617-620.
[12] 景页 孟翔峰. 自粘接树脂水门汀与二氧化锆陶瓷间粘接耐久性的研究[J]. 国际口腔医学杂志, 2013, 40(3): 301-304.
[13] 林艺华1 宋晓萌2 张玮3. 3种树脂加强型玻璃离子与氧化锆陶瓷粘接性能的研究[J]. 国际口腔医学杂志, 2013, 40(3): 305-308.
[14] 司家文1 万浩元1 胡启凡2 孙惠强1. 纯钛表面氧化钛和氧化锆涂层的结构性能及细胞毒性[J]. 国际口腔医学杂志, 2011, 38(5): 531-534.
[15] 杨活川综述 李彦审校. 义齿软衬和赝复体硅橡胶抗菌性的研究进展[J]. 国际口腔医学杂志, 2011, 38(5): 559-562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .