国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (2): 205-212.doi: 10.7518/gjkq.2021028

• 综述 • 上一篇    下一篇

循环肿瘤细胞与口腔鳞状细胞癌相关性的研究进展

甘建国1(),高攀2,王晓毅1()   

  1. 1.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院头颈肿瘤外科 成都 610041
    2.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院全科门诊及急诊科 成都 610041
  • 收稿日期:2020-06-16 修回日期:2020-11-26 出版日期:2021-03-01 发布日期:2021-03-17
  • 通讯作者: 王晓毅
  • 作者简介:甘建国,硕士,Email: gandentist@qq.com
  • 基金资助:
    四川大学华西口腔医院基础与应用基础研究项目(RD-02-201914)

Research progress on the relationship between circulating tumor cells and oral squamous cell carcinoma

Gan Jianguo1(),Gao Pan2,Wang Xiaoyi1()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of General and Emergency Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-06-16 Revised:2020-11-26 Online:2021-03-01 Published:2021-03-17
  • Contact: Xiaoyi Wang
  • Supported by:
    Fund of Basic and Applied Basic Research, West China Hospital of Stomatology, Sichuan University(RD-02-201914)

摘要:

循环肿瘤细胞(CTCs)是从原发灶部位脱落、释放并转移到血液循环的肿瘤细胞,目前广泛应用于肺癌、乳腺癌等恶性肿瘤的早期诊断、治疗、疗效评价和预后判断,但是在口腔鳞状细胞癌(OSCC)中运用较少且缺乏相关的临床证据。有研究表明,CTCs是OSCC相对独立的预后指标,而且是复发或转移的重要原因之一。本文为深入阐述OSCC中CTCs的形成机制及其检测技术,探索OSCC相关CTCs生物标志物的临床意义,了解CTCs与OSCC进展及预后的关系,现就CTCs与OSCC的相关性研究作一综述。

关键词: 循环肿瘤细胞, 口腔鳞状细胞癌, 预后

Abstract:

Circulating tumour cells (CTCs) are tumour cells that disseminate from primary lesion into the peripheral circulating blood. Studies have linked CTCs to the early diagnosis, therapy, therapeutic evaluation and prognostic assessment of cancers, particularly breast and lung cancers. However, CTCs are seldom used in oral squamous cell carcinoma (OSCC), and their value in OSCC lacks clinical evidences. Current evidence has shown that CTCs are a relatively independent prognostic factor and one of the most important reasons of the recurrence and metastasis of OSCC. This paper reviews the current research status of CTCs in OSCC to further elaborate the mechanism of CTCs formation in OSCC and its detection techniques, explore the clinical importance of the biomarkers of OSCC-related CTCs and understand the progression and prognostic relationship between CTCs and OSCC.

Key words: circulating tumor cells, oral squamous cell carcinoma, prognosis

中图分类号: 

  • R782.2

表1

CTCs常用检测方法比较"

方法原理 细胞活力 特异度 敏感度 是否依赖EpCAM
免疫磁珠分离
基于细胞大小分离
微流体芯片技术 是/否
[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020,70(1):7-30.
[2] Shield KD, Ferlay J, Jemal A, et al. The global incidence of lip, oral cavity, and pharyngeal cancers by subsite in 2012[J]. CA Cancer J Clin, 2017,67(1):51-64.
[3] Du M, Nair R, Jamieson L, et al. Incidence trends of lip, oral cavity, and pharyngeal cancers: global burden of disease 1990-2017[J]. J Dent Res, 2020,99(2):143-151.
pmid: 31874128
[4] Chen WQ, Zheng RS, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016,66(2):115-132.
[5] Saika K, Matsuda T. International comparison of lip, oral cavity and pharynx cancer incidence[J]. Jpn J Clin Oncol, 2020,50(4):479-480.
[6] Hong B, Zu YL. Detecting circulating tumor cells: current challenges and new trends[J]. Theranostics, 2013,3(6):377-394.
[7] Maly V, Maly O, Kolostova K, et al. Circulating tumor cells in diagnosis and treatment of lung cancer[J]. In Vivo, 2019,33(4):1027-1037.
pmid: 31280190
[8] Kwan TT, Bardia A, Spring LM, et al. A digital RNA signature of circulating tumor cells predicting early therapeutic response in localized and metasta-tic breast cancer[J]. Cancer Discov, 2018,8(10):1286-1299.
doi: 10.1158/2159-8290.CD-18-0432 pmid: 30104333
[9] Zhang DJ, Zhao L, Zhou PF, et al. Circulating tumor microemboli (CTM) and vimentin+ circulating tumor cells (CTCs) detected by a size-based platform predict worse prognosis in advanced colorectal cancer patients during chemotherapy[J]. Cancer Cell Int, 2017,17:6.
pmid: 28070168
[10] Marrinucci D, Bethel K, Kolatkar A, et al. Fluid bio-psy in patients with metastatic prostate, pancreatic and breast cancers[J]. Phys Biol, 2012,9(1):016003.
[11] De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression[J]. Nat Rev Cancer, 2013,13(2):97-110.
doi: 10.1038/nrc3447 pmid: 23344542
[12] Sánchez-Tilló E, Liu YQ, de Barrios O, et al. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness[J]. Cell Mol Life Sci, 2012,69(20):3429-3456.
doi: 10.1007/s00018-012-1122-2 pmid: 22945800
[13] Wu MZ, Tsai YP, Yang MH, et al. Interplay between HDAC3 and WDR5 is essential for hypoxia-indu-ced epithelial-mesenchymal transition[J]. Mol Cell, 2011,43(5):811-822.
[14] Wang JQ, Yan FQ, Wang LH, et al. Identification of new hypoxia-regulated epithelial-mesenchymal transition marker genes labeled by H3K4 acetylation[J]. Genes Chromosomes Cancer, 2020,59(2):73-83.
pmid: 31408253
[15] Liu X, Li JJ, Cadilha BL, et al. Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis[J]. Sci Adv, 2019, 5(6): eaav4275.
[16] Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells[J]. Nature, 2016,529(7586):298-306.
doi: 10.1038/nature17038 pmid: 26791720
[17] Keller L, Pantel K. Unravelling tumour heterogenei-ty by single-cell profiling of circulating tumour cells[J]. Nat Rev Cancer, 2019,19(10):553-567.
pmid: 31455893
[18] Friedl P. Prespecification and plasticity: shifting mechanisms of cell migration[J]. Curr Opin Cell Biol, 2004,16(1):14-23.
pmid: 15037300
[19] Shigeishi H, Yokoyama S, Murodumi H, et al. Effect of hydrogel stiffness on morphology and gene expression pattern of CD44high oral squamous cell carcinoma cells[J]. Int J Clin Exp Pathol, 2019,12(8):2826-2836.
pmid: 31934119
[20] Liu YJ, Le Berre M, Lautenschlaeger F, et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells[J]. Cell, 2015,160(4):659-672.
pmid: 25679760
[21] Taddei ML, Giannoni E, Fiaschi T, et al. Anoikis: an emerging hallmark in health and diseases[J]. J Pathol, 2012,226(2):380-393.
[22] Strilic B, Offermanns S. Intravascular survival and extravasation of tumor cells[J]. Cancer Cell, 2017,32(3):282-293.
[23] In,t Veld SGJG, Wurdinger T. Tumor-educated platelets[J]. Blood, 2019,133(22):2359-2364.
doi: 10.1182/blood-2018-12-852830 pmid: 30833413
[24] Heeke S, Mograbi B, Alix-Panabières C, et al. Ne-ver travel alone: the crosstalk of circulating tumor cells and the blood microenvironment[J]. Cells, 2019,8(7):E714.
[25] Spiegel A, Brooks MW, Houshyar S, et al. Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells[J]. Cancer Discov, 2016,6(6):630-649.
[26] Hu B, Rochefort H, Goldkorn A. Circulating tumor cells in prostate cancer[J]. Cancers, 2013,5(4):1676-1690.
doi: 10.3390/cancers5041676 pmid: 24305656
[27] Giesing M, Driesel G, Molitor D, et al. Molecular phenotyping of circulating tumour cells in patients with prostate cancer: prediction of distant metastases[J]. BJU Int, 2012,110(11 Pt C):E1202-E1211.
[28] Pantel K, Brakenhoff RH. Dissecting the metastatic cascade[J]. Nat Rev Cancer, 2004,4(6):448-456.
[29] Brown M, Assen FP, Leithner A, et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice[J]. Science, 2018,359(6382):1408-1411.
pmid: 29567714
[30] Liberko M, Kolostova K, Bobek V. Essentials of circulating tumor cells for clinical research and practice[J]. Crit Rev Oncol Hematol, 2013,88(2):338-356.
pmid: 23830807
[31] Dementeva N, Kokova D, Mayboroda OA. Current methods of the circulating tumor cells (CTC) analysis: a brief overview[J]. Curr Pharm Des, 2017,23(32):4726-4728.
pmid: 28625134
[32] Thiele JA, Bethel K, Králíčková M, et al. Circula-ting tumor cells: fluid surrogates of solid tumors[J]. Annu Rev Pathol, 2017,12:419-447.
doi: 10.1146/annurev-pathol-052016-100256 pmid: 28135562
[33] Karabacak NM, Spuhler PS, Fachin F, et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples[J]. Nat Protoc, 2014,9(3):694-710.
[34] Lin HC, Hsu HC, Hsieh CH, et al. A negative selection system PowerMag for effective leukocyte depletion and enhanced detection of EpCAM positive and negative circulating tumor cells[J]. Clin Chim Acta, 2013,419:77-84.
pmid: 23415697
[35] Sharma S, Zhuang R, Long M, et al. Circulating tumor cell isolation, culture, and downstream molecular analysis[J]. Biotechnol Adv, 2018,36(4):1063-1078.
[36] Tinhofer I, Staudte S. Circulating tumor cells as biomarkers in head and neck cancer: recent advances and future outlook[J]. Expert Rev Mol Diagn, 2018,18(10):897-906.
doi: 10.1080/14737159.2018.1522251 pmid: 30199647
[37] Hyun KA, Kim J, Gwak H, et al. Isolation and enrichment of circulating biomarkers for cancer screening, detection, and diagnostics[J]. Analyst, 2016,141(2):382-392.
[38] Park ES, Jin C, Guo Q, et al. Continuous flow deformability-based separation of circulating tumor cells using microfluidic ratchets[J]. Small, 2016,12(14):1909-1919.
doi: 10.1002/smll.201503639 pmid: 26917414
[39] Bhana S, Wang YM, Huang XH. Nanotechnology for enrichment and detection of circulating tumor cells[J]. Nanomedicine (Lond), 2015,10(12):1973-1990.
[40] Tang M, Xia HF, Xu CM, et al. Magnetic chip based extracorporeal circulation: a new tool for circulating tumor cell in vivo detection[J]. Anal Chem, 2019,91(23):15260-15266.
doi: 10.1021/acs.analchem.9b04286 pmid: 31692331
[41] Atiyah RA, Krespi YP, Hidvegi D, et al. The mechanical spread of viable tumor during surgery[J]. Otolaryngol Head Neck Surg, 1986,94(3):278-281.
pmid: 3083353
[42] Buglione M, Grisanti S, Almici C, et al. Circulating tumour cells in locally advanced head and neck cancer: preliminary report about their possible role in predicting response to non-surgical treatment and survival[J]. Eur J Cancer, 2012,48(16):3019-3026.
pmid: 22682019
[43] Bozec A, Ilie M, Dassonville O, et al. Significance of circulating tumor cell detection using the CellSearch system in patients with locally advanced head and neck squamous cell carcinoma[J]. Eur Arch Otorhinolaryngol, 2013,270(10):2745-2749.
doi: 10.1007/s00405-013-2399-y pmid: 23430081
[44] Kawada T, Takahashi H, Sakakura K, et al. Circula-ting tumor cells in patients with head and neck squamous cell carcinoma: feasibility of detection and quantitation[J]. Head Neck, 2017,39(11):2180-2186.
[45] Gröbe A, Blessmann M, Hanken, et al. Prognostic relevance of circulating tumor cells in blood and disseminated tumor cells in bone marrow of patients with squamous cell carcinoma of the oral cavity[J]. Clin Cancer Res, 2014,20(2):425-433.
pmid: 24218516
[46] Wang HM, Wu MH, Chang PH, et al. The change in circulating tumor cells before and during concurrent chemoradiotherapy is associated with survival in patients with locally advanced head and neck cancer[J]. Head Neck, 2019,41(8):2676-2687.
[47] Tinhofer I, Konschak R, Stromberger C, et al. Detection of circulating tumor cells for prediction of recurrence after adjuvant chemoradiation in locally advanced squamous cell carcinoma of the head and neck[J]. Ann Oncol, 2014,25(10):2042-2047.
doi: 10.1093/annonc/mdu271 pmid: 25057171
[48] Sun TJ, Zou K, Yuan ZW, et al. Clinicopathological and prognostic significance of circulating tumor cells in patients with head and neck cancer: a Meta-analysis[J]. Onco Targets Ther, 2017,10:3907-3916.
doi: 10.2147/OTT
[49] Xun YF, Cao Q, Zhang JX, et al. Clinicopathological and prognostic significance of circulating tumor cells in head and neck squamous cell carcinoma: a systematic review and Meta-analysis[J]. Oral Oncol, 2020,104:104638.
doi: 10.1016/j.oraloncology.2020.104638 pmid: 32182549
[50] Aceto N, Bardia A, Miyamoto DT, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis[J]. Cell, 2014,158(5):1110-1122.
pmid: 25171411
[51] Fang J, Xiao L, Zhang QY, et al. Junction plakoglobin, a potential prognostic marker of oral squamous cell carcinoma, promotes proliferation, migration and invasion[J]. J Oral Pathol Med, 2020,49(1):30-38.
pmid: 31420988
[52] Lee HY, Yu NY, Lee SH, et al. Podoplanin promotes cancer-associated thrombosis and contributes to the unfavorable overall survival in an ectopic xenograft mouse model of oral cancer[J]. Biomed J, 2020,43(2):146-162.
doi: 10.1016/j.bj.2019.07.001 pmid: 32441651
[53] Hsieh JC, Lin HC, Huang CY, et al. Prognostic va-lue of circulating tumor cells with podoplanin expression in patients with locally advanced or metastatic head and neck squamous cell carcinoma[J]. Head Neck, 2015,37(10):1448-1455.
doi: 10.1002/hed.23779 pmid: 24844673
[54] Strati A, Koutsodontis G, Papaxoinis G, et al. Prognostic significance of PD-L1 expression on circula-ting tumor cells in patients with head and neck squamous cell carcinoma[J]. Ann Oncol, 2017,28(8):1923-1933.
pmid: 28838214
[55] Kusukawa J, Suefuji Y, Ryu F, et al. Dissemination of cancer cells into circulation occurs by incisional biopsy of oral squamous cell carcinoma[J]. J Oral Pathol Med, 2000,29(7):303-307.
doi: 10.1034/j.1600-0714.2000.290703.x pmid: 10947245
[56] Dyavanagoudar S, Kale A, Bhat K, et al. Reverse transcriptase polymerase chain reaction study to evaluate dissemination of cancer cells into circulation after incision biopsy in oral squamous cell carcinoma[J]. Indian J Dent Res, 2008,19(4):315-319.
[57] Jatana KR, Balasubramanian P, McMullen KP, et al. Effect of surgical intervention on circulating tumor cells in patients with squamous cell carcinoma of the head and neck using a negative enrichment technology[J]. Head Neck, 2016,38(12):1799-1803.
doi: 10.1002/hed.24519 pmid: 27265898
[1] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[2] 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67.
[3] 吴佳敏,夏斌,杨禾丰,许彪. 癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 711-717.
[4] 柳江龙, 买买提吐逊·吐尔地. 超声造影在口腔鳞状细胞癌颈部转移性淋巴结诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 514-520.
[5] 盛南宁,王珏,南欣荣. 性别决定基因盒9在口腔鳞状细胞癌作用机制和治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 314-320.
[6] 李潭,梁新华. 盘状蛋白结构域受体1在调控恶性肿瘤进展和治疗中的作用[J]. 国际口腔医学杂志, 2023, 50(2): 230-236.
[7] 赵卓平,辛鹏飞,高阳,张彩凤,张宽收,刘青梅. 光热治疗在口腔鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 462-470.
[8] 江涵,神应强,陈谦明. 毒蕈碱受体通过Yes相关蛋白信号对口腔鳞状细胞癌生物学行为的实验研究[J]. 国际口腔医学杂志, 2022, 49(2): 138-143.
[9] 白皓亮,杨禾,赵蕾. 牙周病风险评估及预后判断工具的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 696-702.
[10] 蒋宇磊,夏斌,饶南荃,杨禾丰,许彪. 外泌体在口腔鳞状细胞癌恶性进展及诊疗应用的研究[J]. 国际口腔医学杂志, 2021, 48(6): 711-717.
[11] 马平川,李春洁,李龙江. 唾液腺导管癌的诊疗研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 459-467.
[12] 黄俊文,乔洁,梅子,陈茁,李杨,乔彬. 脂多糖结合蛋白在口腔鳞状细胞癌中的表达及其临床意义[J]. 国际口腔医学杂志, 2021, 48(1): 50-57.
[13] 何宇晴,但红霞,陈谦明. 光动力疗法在口腔黏膜癌变防治中的应用[J]. 国际口腔医学杂志, 2020, 47(6): 669-676.
[14] 郝福,宁毅,孙睿,郑晓旭. 口腔鳞状细胞癌中转化因子2β的表达及潜在的临床意义[J]. 国际口腔医学杂志, 2020, 47(2): 159-165.
[15] 薛伶俐,李雅冬. 经首次根治性手术治疗口腔鳞状细胞癌患者的生存相关影响因素分析[J]. 国际口腔医学杂志, 2020, 47(2): 166-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .