国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (1): 58-63.doi: 10.7518/gjkq.2021007

• 综述 • 上一篇    下一篇

脂联素对骨髓间充质干细胞的作用及其调控机制

陈野,周丰,邬琼辉,车会凌,李佳璇,申佳琪,罗恩()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医学院 成都 610041
  • 收稿日期:2020-04-12 修回日期:2020-09-03 出版日期:2021-01-01 发布日期:2021-01-20
  • 通讯作者: 罗恩
  • 作者简介:陈野,学士,Email: <email>1450234528@qq.com</email>
  • 基金资助:
    国家自然科学基金(81970917)

Effect of adiponectin on bone marrow mesenchymal stem cells and its regulatory mechanisms

Chen Ye,Zhou Feng,Wu Qionghui,Che Huiling,Li Jiaxuan,Shen Jiaqi,Luo En()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-04-12 Revised:2020-09-03 Online:2021-01-01 Published:2021-01-20
  • Contact: En Luo
  • Supported by:
    This study was supported by National Natural Science Foundation of China (81970917).(81970917)

摘要:

骨髓间充质干细胞(BMSCs)是治疗颅颌面骨疾病的研究热点,BMSCs在增殖、分化、迁徙方面的功能以及在组织环境中的存活能力决定了其骨质修复重建的质量和速度。脂联素(APN)是一种主要由脂肪组织分泌的脂肪因子,除了与脂代谢密切相关,近年来研究发现其还能通过多种途径调控BMSCs而影响成骨作用的进程,对骨—脂代谢平衡具有重要的调节作用。本文对APN的生物学特性、APN调控BMSCs增殖、成骨分化、迁徙和存活能力的作用以及相关信号通路的研究进展作一综述,为骨质疏松等骨相关疾病的预防和治疗提供新思路。

关键词: 脂联素, 骨髓间充质干细胞, 成骨作用

Abstract:

Bone marrow mesenchymal stem cells (BMSCs) are a research hotspot for the treatment of cranio-maxillofacial bone diseases. The function of BMSCs with regard to proliferation, differentiation, migration and survival ability in the tissue environment determines the quality and speed of bone repair and reconstruction. Adiponectin (APN) is an adipokine factor secreted primarily by adipose tissue. Apart from being closely related to lipid metabolism, APN can also affect the process of osteogenesis by regulating the function of BMSCs in a variety of ways, which plays an important role in regulating the balance of bone-lipid metabolism. In the article, the biological characteristics of APN and role of APN in regulating the proliferation, osteogenic differentiation, migration and survival ability of BMSCs and related signalling pathways are reviewed to provide new ideas for the prevention and treatment of bone-related diseases such as osteoporosis.

Key words: adiponectin, bone marrow mesenchymal stem cells, osteogenesis

中图分类号: 

  • R336
[1] Marasini S, Chang DY, Jung JH , et al. Effects of adenoviral gene transduction on the stemness of human bone marrow mesenchymal stem cells[J]. Mol Cells, 2017,40(8):598-605.
pmid: 28835020
[2] Lin W, Xu G . Over-expression of CNTF in bone marrow mesenchymal stem cells protects RPE cells from short-wavelength, blue-light injury[J]. In Vitro Cell Dev Biol Anim, 2018,54(5):355-365.
[3] Wang JC, Liu SZ, Shi JY , et al. The role of lncRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells[J]. Curr Stem Cell Res Ther, 2020,15(3):243-249.
pmid: 31880266
[4] 王泽昊, 岳兵, 蒋国强 . 骨髓间充质干细胞的示踪技术研究进展[J]. 中华骨科杂志, 2017,37(18):1171-1176.
Wang ZH, Yue B, Jiang GQ . Advances in tracing techniques of bone marrow mesenchymal stem cells[J]. Chin J Orthop, 2017,37(18):1171-1176.
[5] Yin GZ, Liu HH, Li JY , et al. Adenoviral delivery of adiponectin ameliorates osteogenesis around implants in ovariectomized rats[J]. J Gene Med, 2019,21(2/3):e3069.
[6] Pal China S, Sanyal S, Chattopadhyay N . Adiponectin signaling and its role in bone metabolism[J]. Cytokine, 2018,112:116-131.
[7] Katira A, Katira A, Tan PH , et al. Evolving role of adiponectin in cancer-controversies and update[J]. Cancer Biol Med, 2016,13(1):101-119.
[8] Wang CY, Tian L, Yu XJ . Hormones and their receptors bridge fat and bone metabolisms[J]. Curr Signal Transduct Ther, 2015,10(1):17-30.
[9] Naot D, Musson DS, Cornish J . The activity of adiponectin in bone[J]. Calcif Tissue Int, 2017,100(5):486-499.
pmid: 27928591
[10] Krumbholz G, Junker S, Meier FMP , et al. Response of human rheumatoid arthritis osteoblasts and osteoclasts to adiponectin[J]. Clin Exp Rheumatol, 2017,35(3):406-414.
pmid: 28079506
[11] Yu LM, Tu QS, Han QQ , et al. Adiponectin regulates bone marrow mesenchymal stem cell niche through a unique signal transduction pathway: an approach for treating bone disease in diabetes[J]. Stem Cells, 2015,33(1):240-252.
[12] Pu YF, Wang MK, Hong YY , et al. Adiponectin promotes human jaw bone marrow mesenchymal stem cell chemotaxis via CXCL1 and CXCL8[J]. J Cell Mol Med, 2017,21(7):1411-1419.
doi: 10.1111/jcmm.13070 pmid: 28176455
[13] Wang F, Wang PX, Wu XL , et al. Deficiency of adiponectin protects against ovariectomy-induced osteoporosis in mice[J]. PLoS One, 2013,8(7):e68497.
[14] Kajimura D, Lee HW, Riley KJ , et al. Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1[J]. Cell Metab, 2013,17(6):901-915.
[15] Luo Y, Zhang YD, Miao GJ , et al. Runx1 regulates osteogenic differentiation of BMSCs by inhibiting a-dipogenesis through Wnt/β-catenin pathway[J]. Arch Oral Biol, 2019,97:176-184.
[16] Berendsen AD, Olsen BR . Regulation of adipogenesis and osteogenesis in mesenchymal stem cells by vascular endothelial growth factor A[J]. J Intern Med, 2015,277(6):674-680.
pmid: 25779338
[17] Kim JH, Liu X, Wang JH , et al. Wnt signaling in bone formation and its therapeutic potential for bone diseases[J]. Ther Adv Musculoskelet Dis, 2013,5(1):13-31.
pmid: 23514963
[18] 张建康, 卫俊俊, 唐曌隆 , 等. Wnt和Notch通路在老龄个体骨髓间充质干细胞成骨中的调控[J]. 国际口腔医学杂志, 2017,44(4):459-465.
Zhang JK, Wei JJ, Tang ZL , et al. Regulation of Wnt and Notch signaling pathways in the osteogenic differentiation of bone marrow-derived mesenchymal stem cells from aged individuals[J]. Int J Stomatol, 2017,44(4):459-465.
[19] Wang YY, Zhang XH, Shao J , et al. Adiponectin regulates BMSC osteogenic differentiation and osteogenesis through the Wnt/β-catenin pathway[J]. Sci Rep, 2017,7(1):3652.
[20] Lin YY, Chen CY, Chuang TY , et al. Adiponectin receptor 1 regulates bone formation and osteoblast differentiation by GSK-3β/β-catenin signaling in mice[J]. Bone, 2014,64:147-154.
doi: 10.1016/j.bone.2014.03.051 pmid: 24713193
[21] Chen EM, Liu GY, Zhou XP , et al. Concentration-dependent, dual roles of IL-10 in the osteogenesis of human BMSCs via P38/MAPK and NF-κB signaling pathways[J]. FASEB J, 2018,32(9):4917-4929.
pmid: 29630408
[22] Pu Y, Wu H, Lu S , et al. Adiponectin promotes human jaw bone marrow stem cell osteogenesis[J]. J Dent Res, 2016,95(7):769-775.
pmid: 26961489
[23] Lee HW, Kim SY, Kim AY , et al. Adiponectin stimulates osteoblast differentiation through induction of COX2 in mesenchymal progenitor cells[J]. Stem Cells, 2009,27(9):2254-2262.
[24] Liu XH, Chen T, Wu YW , et al. Role and mechanism of PTEN in adiponectin-induced osteogenesis in human bone marrow mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2017,483(1):712-717.
[25] Wu YW, Tu QS, Valverde P , et al. Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice[J]. Am J Physiol Endocrinol Metab, 2014,306(12):E1418-E1430.
doi: 10.1152/ajpendo.00048.2014 pmid: 24780611
[26] Yang SM, Liu HH, Liu Y , et al. Effect of adiponectin secreted from adipose-derived stem cells on bone-fat balance and bone defect healing[J]. J Tissue Eng Regen Med, 2019,13(11):2055-2066.
doi: 10.1002/term.v13.11
[27] Fu X, Liu G, Halim A , et al. Mesenchymal stem cell migration and tissue repair[J]. Cells, 2019,8(8):784.
[28] Yu L, Tu Q, Han Q , et al. Adiponectin regulates bone marrow mesenchymal stem cell niche through a unique signal transduction pathway: an approach for treating bone disease in diabetes[J]. Stem Cells, 2015,33(1):240-252.
doi: 10.1002/stem.1844 pmid: 25187480
[29] Wu X, Qiu W, Hu Z , et al. An adiponectin teceptor agonist reduces type 2 diabetic periodontitis[J]. J Dent Res, 2019,98(3):313-321.
pmid: 30626266
[30] Chen X, Hu JG, Huang YZ , et al. Copper promotes the migration of bone marrow mesenchymal stem cells via Rnd3-dependent cytoskeleton remodeling[J]. J Cell Physiol, 2020,235(1):221-231.
[31] Tian XQ, Yang YJ, Li Q , et al. Globular adiponectin inhibits the apoptosis of mesenchymal stem cells induced by hypoxia and serum deprivation via the adipoR1-mediated pathway[J]. Cell Physiol Biochem, 2016,38(3):909-925.
[32] Zhao L, Fan CX, Zhang Y , et al. Adiponectin enhances bone marrow mesenchymal stem cell resistance to flow shear stress through AMP-activated protein kinase signaling[J]. Sci Rep, 2016,6:28752.
doi: 10.1038/srep28752 pmid: 27418435
[33] Malih S, Saidijam M, Mansouri K , et al. Promigratory and proangiogenic effects of AdipoRon on bone marrow-derived mesenchymal stem cells: an in vitro study[J]. Biotechnol Lett, 2017,39(1):39-44.
doi: 10.1007/s10529-016-2214-0 pmid: 27627895
[34] Hu LF, Yin C, Zhao F , et al. Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment[J]. Int J Mol Sci, 2018,19(2):E360.
pmid: 29370110
[35] Greco EA, Lenzi A, Migliaccio S . The obesity of bone[J]. Ther Adv Endocrinol Metab, 2015,6(6):273-286.
doi: 10.1177/2042018815611004 pmid: 26623005
[36] Weinberg E, Maymon T, Weinreb M . AGEs induce caspase-mediated apoptosis of rat BMSCs via TNFα production and oxidative stress[J]. J Mol Endocrinol, 2014,52(1):67-76.
[37] Keats EC, 2ndDominguez JM, Grant MB, et al. Switch from canonical to noncanonical Wnt signaling mediates high glucose-induced adipogenesis[J]. Stem Cells, 2014,32(6):1649-1660.
doi: 10.1002/stem.1659 pmid: 24496952
[38] Zhu LL, Chen XZ, Chong L , et al. Adiponectin alleviates exacerbation of airway inflammation and oxidative stress in obesity-related asthma mice partly through AMPK signaling pathway[J]. Int Immunopharmacol, 2019,67:396-407.
doi: 10.1016/j.intimp.2018.12.030 pmid: 30584969
[1] 张勤,宫苹. 受体活性修饰蛋白1促进成骨作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 30-36.
[2] 薛令法, 张岱尊, 肖文林, 于保军. 机械牵张力促进小鼠骨髓间充质干细胞的成骨向分化[J]. 国际口腔医学杂志, 2017, 44(6): 679-685.
[3] 张建康, 卫俊俊, 唐曌隆, 余云波, 敬伟. Wnt和Notch通路在老龄个体骨髓间充质干细胞成骨中的调控[J]. 国际口腔医学杂志, 2017, 44(4): 459-465.
[4] 王涛1 廖天安1 王鸿1 邓伟1 于大海2. 血管内皮生长因子基因修饰骨髓间充质干细胞移植于放射治疗后组织的实验研究[J]. 国际口腔医学杂志, 2014, 41(2): 133-136.
[5] 王晨星综述 陈刚审校. 脂肪干细胞在骨组织工程中的应用进展[J]. 国际口腔医学杂志, 2011, 38(5): 550-553.
[6] 张欣综述 徐蓓芸 俞立英审校. 脂联素对Ⅱ型糖尿病患者伴牙周炎的影响[J]. 国际口腔医学杂志, 2011, 38(5): 607-610.
[7] 刘琦综述 李祖兵审校. nell-1 型基因成骨及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2011, 38(3): 364-366.
[8] 王婷婷,万乾炳,. 骨髓干细胞应用于牙槽骨修复的展望[J]. 国际口腔医学杂志, 2008, 35(S1): -.
[9] 邹淑娟,陈扬熙. 机械张力对颅面骨缝成骨作用的研究进展[J]. 国际口腔医学杂志, 2005, 32(03): 172-174.
[10] 谢谦 黄洪章. 骨髓间充质干细胞与骨相关研究[J]. 国际口腔医学杂志, 2004, 31(03): 181-182.
[11] 吴昊 谢昊 . 载体对骨形成蛋白诱导成骨作用的影响[J]. 国际口腔医学杂志, 2003, 30(02): 102-104.
[12] 李纾,汪说之,樊明文. 表皮生长因子及其受体在牙周组织中表达的病理生理意义[J]. 国际口腔医学杂志, 2001, 28(03): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .