国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (3): 270-276.doi: 10.7518/gjkq.2019028

• 信号通路专栏 • 上一篇    下一篇

大鼠正畸牙移动过程中转化生长因子-β/Smad信号通路相关蛋白质在Malassez上皮剩余细胞的表达变化

杨亚,陈鹏,戴红卫,张林()   

  1. 重庆医科大学附属口腔医院正畸科 口腔疾病与生物医学重庆市重点实验室重庆市高校市级口腔生物医学工程重点实验室 重庆 401147
  • 收稿日期:2018-09-09 修回日期:2018-12-28 出版日期:2019-05-01 发布日期:2019-06-05
  • 通讯作者: 张林
  • 作者简介:杨亚,硕士,Email:1289971655@qq.com
  • 基金资助:
    国家自然科学基金(81400541);重庆高校创新团队建设计划(CXTDG201602006);重庆市高校市级口腔生物医学工程重点实验室资助项目(2014)

Change in expression of transformation growth factor-β/Smad signalling pathway-related proteins in epithelial rests of Malassez during orthodontic tooth movement in rats

Ya Yang,Peng Chen,Hongwei Dai,Lin Zhang()   

  1. Dept. of Orthodontics, Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
  • Received:2018-09-09 Revised:2018-12-28 Online:2019-05-01 Published:2019-06-05
  • Contact: Lin Zhang
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81400541);Project Supported by Program for Innovation Team Building at Institutions of Higher Education in Chongqing(CXTDG201602006);Project Supported by Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education

摘要:

目的 通过检测大鼠正畸牙移动过程中转化生长因子(TGF)-β/Smad信号通路相关蛋白质在Malassez上皮剩余细胞(ERM)中的表达情况以及ERM的功能变化,探讨TGF-β/Smad信号通路调控ERM参与正畸牙移动的作用机制。方法 30只雄性8周龄健康Sprague-Dawley(SD)大鼠,在上颌右侧第一磨牙与切牙间安装镍钛拉簧,加载50 g力,作为实验组,上颌左侧作为对照组。于加力前以及加力后1、4、7、10、14 d处死大鼠,取下双侧包括上颌第一磨牙及周围牙槽骨在内的组织块,采用免疫组织化学染色方法,通过Image-Pro plus图像分析系统软件对实验组和对照组切片进行分析,在同一光强度下测量染色阳性信号的积分光密度(IOD),观察ERM表达的TGF-β1、Smad2、Smad3、增殖细胞核抗原(PCNA)的IOD值表达变化,并且比较实验组和对照组第一磨牙牙颈部和根分叉区ERM数量以及ERM集群表面积变化。所有数据使用SPSS 17.0软件进行t检验和秩和检验统计分析。结果 加力1 d后,TGF-β1、Smad2、Smad3免疫组织化学染色阳性增强,7 d后达到高峰,随后呈下降趋势;加力1、4、7、10、14 d组,TGF-β1、Smad2、Smad3的IOD值与对照组比较差异有统计学意义。加力4 d后,PCNA免疫组织化学染色阳性增强,加力7 d后明显增强,在第10 d达到高峰,随后呈下降趋势;加力4、7、10、14 d组,PCNA的IOD值与对照组比较差异有统计学意义。加力4、7、10、14 d组,ERM数量和ERM集群表面积与对照组比较差异有统计学意义。结论 在力学刺激的作用下,ERM的数量增多,ERM集群表面积也增大,TGF-β/Smad信号通路相关分子TGF-β1、Smad2、Smad3在ERM内表达,并且随加力时间的增加而呈现趋势性变化,表明ERM在机械力作用下通过TGF-β/Smad信号通路来调控其在正畸牙移动过程中的作用。

关键词: Malassez上皮剩余细胞, 正畸牙移动, 转化生长因子-β/Smad信号通路;

Abstract:

Objective This study aimed to investigate the expression of transformation growth factor (TGF)-β/Smad signal pathway-related proteins in the epithelial rests of Malassez (ERM) and the functional change in ERM during orthodontic tooth movement in rats to explore the mechanism by which the TGF-β/Smad signal pathway regulates ERM that is involved in tooth movement. Methods Tooth movement was achieved in 30 healthy male Sprague-Dawley rats (weighing 200-250 g each) by placing NiTi coil springs between the maxillary right first molar and incisor with the force of 50 g. The left side served as controls. Rats were killed at 0, 1, 4, 7, 10 and 14 days. Bilateral masses, including the maxillary first molars and the surrounding alveolar bone, were removed. Immunohistochemical staining was used to analyse the sections with the Image-Pro Plus Image Analysis System. The integrated optical density (IOD) of the stained positive signal was measured under the same light intensity. The IOD values of TGF-β1, Smad2, Smad3 and proliferative cell nuclear antigen (PCNA) were measured for all groups. The number of ERM was counted, and the surface areas of the ERM cluster were measured in the cervical and furcational regions of the first molar for all groups. The results were evaluated using the t-test and Kruskal-Wallis test with SPSS 17.0 software. Results The TGF-β1, Smad2, Smad3 and PCNA expression was weak in control rats. The immunofluorescence staining of TGF-β1, Smad2 and Smad3 increased after the 1st day, peaked on the 7th day and then decreased. On the 1st, 4th, 7th, 10th and 14th day, the IOD values of TGF-β1, Smad2 and Smad3 were statistically significant compared with those of the control group. After 4 days, PCNA immunohistochemistry positive staining increased. After 7 days, the PCNA expression level significantly increased, peaked on the 10th day and then decreased afterwards. On the 4th, 7th, 10th and 14th day, the IOD values of PCNA were statistically significant compared with those of the control group. The number of ERM and the surface area of the ERM cluster were statistically significant compared with those of the control group on the 4th, 7th, 10th and 14th day. Conclusion The number of ERM and the surface area of the ERM cluster both increased under a mechanical force. The TGF-β/Smad signalling pathway-related proteins (namely, TGF-β1, Smad2 and Smad3) were expressed in ERM and showed a trend change with the increase in force time. This result indicated that ERM can regulate its function in tooth movement through the TGF-β/Smad signalling pathway under a mechanical force.

Key words: epithelial cell rests of Malassez, orthodontic tooth movement, transformation growth factor-β/Smad signalling pathway;

中图分类号: 

  • R783.5

图 1

对照组ERM的TGF-β1、Smad2、Smad3表达情况 免疫组织化学染色 × 40 A:TGF-β1;B:Smad2;C:Smad3。PDL:牙周膜;R:牙根;AL:牙槽骨。箭头示ERM。"

图 2

加力1 d实验组ERM的TGF-β1、Smad2、Smad3表达情况 免疫组织化学染色 × 40 A:TGF-β1;B:Smad2;C:Smad3。PDL:牙周膜;R:牙根;AL:牙槽骨。箭头示ERM。"

图 3

加力7 d实验组ERM的TGF-β1、Smad2、Smad3表达情况 免疫组织化学染色 × 40 A:TGF-β1;B:Smad2;C:Smad3。PDL:牙周膜;R:牙根;AL:牙槽骨。箭头示ERM。"

图 4

加力14 d实验组ERM的TGF-β1、Smad2、Smad3表达情况 免疫组织化学染色 × 40 A:TGF-β1;B:Smad2;C:Smad3。PDL:牙周膜;R:牙根;AL:牙槽骨。箭头示ERM。"

表 1

正畸牙移动大鼠ERM的TGF-β1、Smad2、Smad3、PCNA表达"

时间/d 分组 TGF-β1 Smad2 Smad3 PCNA
0 实验组 47.7±7.0 38.0±10.0 38.2±9.7 23.0±2.6
对照组 43.8±3.2 34.4±1.5 37.2±1.5 21.2±1.5
1 实验组 72.8±4.8 68.6±4.2 69.3±4.9 22.8±2.4
对照组 48.0±2.4 42.2±2.4 39.0±2.1 21.5±1.4
4 实验组 136.2±6.4 142.9±4.9 143.5±5.2 41.2±7.7
对照组 53.4±0.7 45.1±3.1 43.1±1.4 25.1±1.2
7 实验组 276.0±5.9 253.6±11.3 248.2±8.6 76.2±7.1
对照组 52.9±1.6 43.7±4.0 52.8±2.0 32.5±1.5
10 实验组 201.7±5.9 178.9±1.5 179.8±2.0 155.0±5.3
对照组 52.9±1.6 51.1±2.6 38.6±1.0 30.4±2.1
14 实验组 135.9±5.0 123.8±6.7 122.2±5.2 127.6±3.0
对照组 55.6±1.9 41.2±1.6 44.1±1.3 35.8±2.1

图 5

ERM的PCNA表达情况 免疫组织化学染色 × 40 A:对照组;B:加力4 d实验组;C:加力10 d实验组。PDL:牙周膜;R:牙根;AL:牙槽骨。箭头示ERM。"

表 2

正畸牙移动大鼠ERM数量和ERM集群表面积"

时间/d 分组 ERM细胞数量 ERM细胞集群表面积
0 实验组 5.3±0.6 525.4±6.2
对照组 5.0±0.0 518.4±3.9
1 实验组 5.0±1.0 566.3±5.2
对照组 4.7±1.2 536.4±5.2
4 实验组 7.3±0.6 803.2±11.3
对照组 5.3±0.6 542.5±2.7
7 实验组 10.0±1.0 1 071.3±41.9
对照组 6.0±1.0 565.4±7.9
10 实验组 9.3±1.5 1 141.5±55.8
对照组 5.7±0.6 559.4±6.2
14 实验组 8.0±1.0 947.4±11.3
对照组 5.3±0.6 569.0±4.2
[1] 于世凤 . 口腔组织病理学[M]. 北京: 人民卫生出版社, 2012: 94.
Yu SF. Oral histopathology[M]. Beijing: People’s Health Publishing House, 2012: 94.
[2] Silva BSE, Fagundes NCF, Nogueira BCL , et al. Epithelial rests of Malassez: from latent cells to active participation in orthodontic movement[J]. Dent Press J Orthod, 2017,22(3):119-125.
doi: 10.1590/2177-6709.22.3.119-125.sar pmid: 5525453
[3] Shimonishi M, Takahashi I, Terao F , et al. Induction of MMP-2 at the interface between epithelial cells and fibroblasts from human periodontal ligament[J]. J Periodontal Res, 2010,45(3):309-316.
doi: 10.1111/j.1600-0765.2009.01237.x pmid: 19909403
[4] Hasegawa N, Kawaguchi H, Ogawa T , et al. Immunohistochemical characteristics of epithelial cell rests of Malassez during cementum repair[J]. J Periodontal Res, 2003,38(1):51-56.
doi: 10.1034/j.1600-0765.2003.01636.x pmid: 12558937
[5] Xiong J, Mrozik K, Gronthos S , et al. Epithelial cell rests of Malassez contain unique stem cell populations capable of undergoing epithelial-mesenchymal tran-sition[J]. Stem Cells Dev, 2012,21(11):2012-2025.
doi: 10.1089/scd.2011.0471 pmid: 3396154
[6] Greenburg G, Hay ED . Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells[J]. J Cell Biol, 1982,95(1):333-339.
doi: 10.1083/jcb.95.1.333 pmid: 7142291
[7] Nawshad A, Lagamba D, Polad A , et al. Transforming growth factor-β signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis[J]. Cells Tissues Organs, 2005,179(1/2):11-23.
doi: 10.1159/000084505 pmid: 15942189
[8] Thiery JP . Epithelial-mesenchymal transitions in tumour progression[J]. Nat Rev Cancer, 2002,2(6):442-454.
doi: 10.1038/nrc822
[9] Zhang YE . Mechanistic insight into contextual TGF- β signaling[J]. Curr Opin Cell Biol, 2018,51:1-7.
doi: 10.1016/j.ceb.2017.10.001 pmid: 29149681
[10] Haku K, Muramatsu T, Hara A , et al. Epithelial cell rests of Malassez modulate cell proliferation, differentiation and apoptosis via gap junctional communication under mechanical stretching in vitro[J]. Bull Tokyo Dent Coll, 2011,52(4):173-182.
doi: 10.2209/tdcpublication.52.173 pmid: 22293587
[11] Koshihara T, Matsuzaka K, Sato T , et al. Effect of stretching force on the cells of epithelial rests of Malassez in vitro[J]. Int J Dent, 2010,2010:458408.
doi: 10.1155/2010/458408 pmid: 20396676
[12] Takahashi K, Shimonishi M, Wang R , et al. Epithelial-mesenchymal interactions induce enamel matrix proteins and proteases in the epithelial cells of the rests of Malassez in vitro[J]. Eur J Oral Sci, 2012,120(6):475-483.
doi: 10.1111/j.1600-0722.2012.01002.x pmid: 23167463
[13] Lee JH, Nam H, Um S , et al. Upregulation of GM-CSF by TGF-β1 in epithelial mesenchymal transition of human HERS/ERM cells[J]. In Vitro Cell Dev Biol Anim, 2014,50(5):399-405.
doi: 10.1007/s11626-013-9712-3 pmid: 24258001
[14] Talic NF, Evans CA, Daniel JC , et al. Proliferation of epithelial rests of Malassez during experimental tooth movement[J]. Am J Orthod Dentofacial Orthop, 2003,123(5):527-533.
doi: 10.1016/S0889-5406(02)56937-7
[15] Xu F, Liu C, Zhou D , et al. TGF-β/SMAD pathway and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016,64(3):157-167.
doi: 10.1369/0022155415627681 pmid: 26747705
[16] Wu M, Chen G, Li YP . TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease[J]. Bone Res, 2016,4:16009.
doi: 10.1038/boneres.2016.9 pmid: 4985055
[1] 尹圆圆,马华钰,李昕怡,徐静晨,柳汀,陈嵩,何姝姝. 小鼠正畸牙移动中牙周组织自噬相关基因表达的初步研究[J]. 国际口腔医学杂志, 2020, 47(6): 627-634.
[2] 赵玉洁,管晓燕,李小兰,陈琦君,王倩,刘建国. 巨噬细胞极化参与正畸牙移动的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 478-483.
[3] 颜子淇1 何武林2 邹淑娟1. 低强度激光促进正畸治疗牙移动的研究进展[J]. 国际口腔医学杂志, 2014, 41(2): 169-171.
[4] 张林1 陈扬熙2 陈雨雪2. 两种方法原代培养人Malassez上皮剩余细胞[J]. 国际口腔医学杂志, 2014, 41(1): 40-44.
[5] 包幸福综述 胡敏审校. 正畸牙移动中骨吸收机制及其调控的研究进展[J]. 国际口腔医学杂志, 2012, 39(2): 187-189.
[6] 彭鹏综述 蔡萍审校. 生长因子在正畸牙移动牙周组织改建中的作用[J]. 国际口腔医学杂志, 2012, 39(2): 252-256.
[7] 许顼杰, 吴丽萍. 精氨酸与NG-硝基-精氨酸甲酯对大鼠正畸牙移动时诱导型一氧化氮合酶的影响[J]. 国际口腔医学杂志, 2009, 36(4): 379-382.
[8] 何奇综述 陈丹鹏, 潘劲松审校. 核心结合因子α1 在正畸成骨中的作用[J]. 国际口腔医学杂志, 2009, 36(3): 303-306.
[9] 莫水学 陈扬熙. 正畸牙移动动物实验常用建模方法[J]. 国际口腔医学杂志, 2003, 30(05): 378-380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .