国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (2): 228-233.doi: 10.7518/gjkq.2019027

• 综述 • 上一篇    下一篇

基于共价接枝的钛种植体载药抗菌涂层的研究进展

刘育豪,袁泉,张士文()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院种植科 成都 610041
  • 收稿日期:2018-08-09 修回日期:2018-12-03 出版日期:2019-03-01 发布日期:2019-03-15
  • 通讯作者: 张士文
  • 作者简介:刘育豪,学士,Email: 2014181641015@stu.scu.edu.cn
  • 基金资助:
    国家自然科学基金(81571001)

Recent research progress on the drug-loaded antibacterial coatings of titanium implants based on covalent grafting

Yuhao Liu,Quan Yuan,Shiwen Zhang()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-08-09 Revised:2018-12-03 Online:2019-03-01 Published:2019-03-15
  • Contact: Shiwen Zhang
  • Supported by:
    This study was supported by National Natural Science Fundation of China(81571001)

摘要:

口腔种植体相关感染已成为影响种植体成功率的重要因素。近年来,研究开发具有抗菌性能的种植体表面涂层材料,尤其是载药涂层材料,已成为新的研究热点。共价接枝是将抗菌药物通过共价键固定于种植体表面的新型载药方法。与其他载药方法相比,其具有优化药物释放模式、改变药物的抗菌机制、提高药物稳定性等优点。本文就共价接枝构建钛种植体载药抗菌涂层的构建方式、应用优劣势及发展前景进行综述。

关键词: 钛种植体, 载药, 抗菌, 共价接枝

Abstract:

Implant-related infection has become an important factor affecting the success rate of titanium implants and a new research hotspot in developing coating materials with antibacterial properties on the implant surface, especially drug-loaded antibacterial coatings. Covalent grafting is an emerging strategy for the immobilisation of antibacterial drugs on the implant surface through covalent bonds. Compared with other drug-loading strategies, covalent grafting is advantageous in optimising drug release kinetics, novel antibacterial mechanisms and drug stability. This article reviewed the modes of construction, application advantages/disadvantages and prospective development of drug-loaded antibacterial coatings of titanium implants based on covalent grafting.

Key words: titanium implant, drug-loading, antibacterial, covalent grafting

中图分类号: 

  • R613

图 1

物理混合载药涂层 A:载药涂层;B:载药二氧化钛纳米管。"

图 2

共价接枝载药涂层 A:共价接枝载药涂层;B:刷状共价接枝载药涂层。"

表 1

共价接枝载药抗菌涂层采用的非抗生素类药物"

类型 举例 应用优点 潜在不足
抗菌肽 hLf1-11[19],KR-12[20],GL13K[21] 广谱抗菌;致敏性弱;较难产生耐药性 共价接枝可能影响分子构象
金属类 [22] 低浓度即可广谱抗菌;较少产生耐药性 其浓度选择及长期毒性有待深入探究
[23] 为人体微量元素,安全性高;有明确的抗菌作用 抗菌作用机制尚未阐明
其他类 壳聚糖[24,25] 生物相容性与生物降解性好;抗菌作用明确 性能极大依赖于脱乙酰程度及分子质量
聚苯乙烯磺酸钠[26,27] 兼有抗菌与促进成骨细胞分化性能 性能依赖于分子质量;促成骨细胞分化机制不明
[1] 李涛, 王娜, 张振庭 . 局部载药涂层预防种植体周围感染的研究进展[J]. 北京口腔医学, 2017,25(5):297-300.
Li T, Wang N, Zhang ZT . Research progress on local drug-loaded coatings for the prevention of peri-im-plant infection[J]. Beijing J Stomatol, 2017,25(5):297-300.
[2] 翁升欣, 赵旭, 关岳锋 , 等. 口腔种植体抗菌涂层材料研究进展[J]. 中国实用口腔科杂志, 2016,9(1):49-53.
doi: 10.7504/kq.2016.01.011
Weng SX, Zhao X, Guan YF , et al. Research progress of oral implant antimicrobial coating material[J]. Chin J Pract Stomatol, 2016,9(1):49-53.
doi: 10.7504/kq.2016.01.011
[3] Goudouri OM, Kontonasaki E, Lohbauer U , et al. Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy[J]. Acta Biomater, 2014,10(8):3795-3810.
doi: 10.1016/j.actbio.2014.03.028 pmid: 24704700
[4] 于娜, 唐晓琳 . 种植体周围炎的危险因素及其防治新进展[J]. 牙体牙髓牙周病学杂志, 2017,27(1):49-52.
doi: 10.15956/j.cnki.chin.j.conserv.dent.2017.01.011
Yu N, Tang XL . Peri-implantitis and its risk factors, prevention and treatment[J]. Chin J Conserv Dent, 2017,27(1) : 49-52.
doi: 10.15956/j.cnki.chin.j.conserv.dent.2017.01.011
[5] Smeets R, Stadlinger B, Schwarz F , et al. Impact of dental implant surface modifications on osseointe-gration[J]. Biomed Res Int, 2016,2016:6285620.
[6] Shalabi MM, Gortemaker A, Van’t Hof MA , et al. Implant surface roughness and bone healing: a sys-tematic review[J]. J Dent Res, 2006,85(6):496-500.
doi: 10.1016/j.clon.2009.08.014 pmid: 16723643
[7] Lin X, Yang S, Lai K , et al. Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods[J]. Nanomedicine, 2017,13(1):123-142.
doi: 10.1016/j.nano.2016.08.003 pmid: 27553074
[8] Neoh KG, Hu X, Zheng D , et al. Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces[J]. Biomaterials, 2012,33(10):2813-2822.
doi: 10.1016/j.biomaterials.2012.01.018 pmid: 22257725
[9] Seddiki O, Harnagea C, Levesque L , et al. Evidence of antibacterial activity on titanium surfaces through nanotextures[J]. Appl Surf Sci, 2014,308:275-284.
doi: 10.1016/j.apsusc.2014.04.155
[10] Losic D, Aw MS, Santos A , et al. Titania nanotube arrays for local drug delivery: recent advances and perspectives[J]. Expert Opin Drug Deliv, 2015,12(1):103-127.
doi: 10.1517/17425247.2014.945418 pmid: 25376706
[11] Bosco R, Iafisco M, Tampieri A , et al. Hydroxya-patite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity[J]. Appl Surf Sci, 2015,328:516-524.
doi: 10.1016/j.apsusc.2014.12.072
[12] Doadrio AL, Conde A, Arenas MA , et al. Use of anodized titanium alloy as drug carrier: ibuprofen as model of drug releasing[J]. Int J Pharm, 2015,492(1/ 2):207-212.
doi: 10.1016/j.ijpharm.2015.07.046
[13] Ordikhani F, Tamjid E, Simchi A . Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for preven-tion of implant-associated infections[J]. Mater Sci Eng C Mater Biol Appl, 2014,41:240-248.
doi: 10.1016/j.msec.2014.04.036 pmid: 24907757
[14] 徐倩, 冯青, 欧俊 , 等. 层层静电自组装构建载药种植体的研究[J]. 华西口腔医学杂志, 2014,32(6):537-541.
doi: 10.7518/hxkq.2014.06.002
Xu Q, Feng Q, Ou J , et al. Construction of drug-loaded titanium implants via layer-by-layer electro-static self-assembly[J]. West Chin J Stomatol, 2014,32(6):537-541.
doi: 10.7518/hxkq.2014.06.002
[15] Lyndon JA, Boyd BJ, Birbilis N . Metallic implant drug/device combinations for controlled drug release in orthopaedic applications[J]. J Control Release, 2014,179:63-75.
doi: 10.1016/j.jconrel.2014.01.026 pmid: 24512924
[16] Edupuganti OP, Antoci V Jr, King SB , et al. Covalent bonding of vancomycin to Ti6Al4V alloy pins provides long-term inhibition of Staphylococcus aureus colonization[J]. Bioorg Med Chem Lett, 2007,17(10):2692-2696.
doi: 10.1016/j.bmcl.2007.03.005 pmid: 17369042
[17] Nie B, Ao H, Zhou J , et al. Biofunctionalization of titanium with bacitracin immobilization shows po-tential for anti-bacteria, osteogenesis and reduction of macrophage inflammation[J]. Colloids Surf B Biointerfaces, 2016,145:728-739.
doi: 10.1016/j.colsurfb.2016.05.089 pmid: 27289314
[18] Walter MS, Frank MJ, Satué M , et al. Bioactive implant surface with electrochemically bound dox-ycycline promotes bone formation markers in vitro and in vivo[J]. Dent Mater, 2014,30(2):200-214.
doi: 10.1016/j.dental.2013.11.006 pmid: 24377939
[19] Godoy-Gallardo M, Mas-Moruno C, Yu K , et al. Antibacterial properties of hLf1-11 peptide onto titanium surfaces: a comparison study between silanization and surface initiated polymerization[J]. Biomacromolecules, 2015,16(2):483-496.
doi: 10.1021/bm501528x pmid: 25545728
[20] Nie B, Long T, Li H , et al. A comparative analysis of antibacterial properties and inflammatory responses for the KR-12 peptide on titanium and PEGylated titanium surfaces[J]. RSC Adv, 2017, ( 55):34321-34330.
doi: 10.1039/C7RA05538B
[21] Holmberg KV, Abdolhosseini M, Li Y , et al. Bio-inspired stable antimicrobial peptide coatings for dental applications[J]. Acta Biomater, 2013,9(9):8224-8231.
doi: 10.1016/j.actbio.2013.06.017 pmid: 3758876
[22] Tîlmaciu CM, Mathieu M, Lavigne JP , et al. In vitro and in vivo characterization of antibacterial activity and biocompatibility: a study on silver-containing phosphonate monolayers on titanium[J]. Acta Bio-mater, 2015,15:266-277.
doi: 10.1016/j.actbio.2014.12.020 pmid: 25562573
[23] Holinka J, Pilz M, Kubista B , et al. Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth[J]. Bone Joint J, 2013,95-B(5):678-682.
doi: 10.1302/0301-620X.95B5.31216 pmid: 23632681
[24] D’Almeida M, Attik N, Amalric J , et al. Chitosan coating as an antibacterial surface for biomedical applications[J]. PLoS One, 2017,12(12):e0189537.
doi: 10.1371/journal.pone.0189537 pmid: 5728531
[25] Vaz JM, Michel EC, Chevallier P , et al. Covalent crafting of chitosan on plasma-treated polytetra-fluoroethylene surfaces for biomedical applications[J]. J Biomater Tiss Eng, 2014,4(11):915-924.
doi: 10.1166/jbt.2014.1262
[26] Alcheikh A, Pavon-Djavid G, Helary G , et al. Poly-NaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion[J]. J Mater Sci Mater Med, 2013,24(7):1745-1754.
doi: 10.1007/s10856-013-4932-3 pmid: 23625318
[27] Chouirfa H, Evans MDM, Bean P , et al. Grafting of bioactive polymers with various architectures: a versatile tool for preparing antibacterial infection and biocompatible surfaces[J]. ACS Appl Mater Interfaces, 2018,10(2):1480-1491.
doi: 10.1021/acsami.7b14283 pmid: 29266919
[28] Godoy-Gallardo M, Mas-Moruno C, Fernández-Calderón MC , et al. Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bac-terial adhesion and biofilm formation[J]. Acta Biomater, 2014,10(8):3522-3534.
doi: 10.1016/j.actbio.2014.03.026 pmid: 24704699
[29] Lv H, Chen Z, Yang X , et al. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation[J]. J Dent, 2014,42(11):1464-1472.
doi: 10.1016/j.jdent.2014.06.003 pmid: 24930872
[30] Li M, Liu Q, Jia ZJ , et al. Polydopamine-induced nanocomposite Ag/CaP coatings on the surface of titania nanotubes for antibacterial and osteointegra-tion functions[J]. J Mater Chem B, 2015,3(45):8796-8805.
doi: 10.1039/C5TB01597A
[31] Kanitthamniyom P, Zhang Y . Application of polydo-pamine in biomedical microfluidic devices[J]. Micro-fluid Nanofluid, 2018,22:24.
doi: 10.1007/s10404-018-2044-6
[32] Raphel J, Holodniy M, Goodman SB , et al. Multi-functional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants[J]. Biomaterials, 2016,84:301-314.
doi: 10.1016/j.biomaterials.2016.01.016 pmid: 26851394
[33] Vaithilingam J, Kilsby S, Goodridge RD , et al. Im-mobilisation of an antibacterial drug to Ti6Al4V components fabricated using selective laser melting[J]. Appl Surf Sci, 2014,314:642-654.
doi: 10.1016/j.apsusc.2014.06.014
[34] Masters KS . Covalent growth factor immobilization strategies for tissue repair and regeneration[J]. Macromol Biosci, 2011,11(9):1149-1163.
doi: 10.1002/mabi.201000505 pmid: 21509937
[35] Gao G, Lange D, Hilpert K , et al. The biocompati-bility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides[J]. Biomaterials, 2011,32(16):3899-3909.
doi: 10.1016/j.biomaterials.2011.02.013 pmid: 21377727
[36] Riool M, de Breij A, Drijfhout JW , et al. Antimicro-bial peptides in biomedical device manufacturing[J]. Front Chem, 2017,5:63.
doi: 10.3389/fchem.2017.00063 pmid: 5609632
[37] Abdolhosseini M, Nandula SR, Song J , et al. Lysine substitutions convert a bacterial-agglutinating pe-ptide into a bactericidal peptide that retains anti-lipo-polysaccharide activity and low hemolytic activity[J]. Peptides, 2012,35(2):231-238.
doi: 10.1016/j.peptides.2012.03.017 pmid: 3356437
[38] Nijhuis AW, van den Beucken JJ, Boerman OC , et al. 1-step versus 2-step immobilization of alkaline pho-sphatase and bone morphogenetic protein-2 onto implant surfaces using polydopamine[J]. Tissue Eng Part C Methods, 2013,19(8):610-619.
doi: 10.1089/ten.tec.2012.0313 pmid: 3689932
[39] Hardy JG, Palma M, Wind SJ , et al. Responsive biomaterials: advances in materials based on shape-memory polymers[J]. Adv Mater, 2016,28(27):5717-5724.
doi: 10.1002/adma.201505417 pmid: 27120512
[40] Qin H, Cao H, Zhao Y , et al. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium[J]. Biomaterials, 2014,35(33):9114-9125.
doi: 10.1016/j.biomaterials.2014.07.040 pmid: 25112937
[41] Chen X, Zhou XC, Liu S , et al. In vivo osseointe-gration of dental implants with an antimicrobial peptide coating[J]. J Mater Sci Mater Med, 2017,28(5):76.
doi: 10.1007/s10856-017-5885-8
[42] Wang L, Chen J, Cai C , et al. Multi-biofunctionalization of a titanium surface with a mixture of peptides to achieve excellent antimicrobial activity and biocom-patibility[J]. J Mater Chem B, 2015,3(1):30-33.
doi: 10.1039/C4TB01318B
[43] Hoyos-Nogués M, Velasco F, Ginebra MP , et al. Regenerating bone via multifunctional coatings: the blending of cell integration and bacterial inhibition properties on the surface of biomaterials[J]. ACS Appl Mater Interfaces, 2017,9(26):21618-21630.
doi: 10.1021/acsami.7b03127 pmid: 28594999
[1] 谭永臻,梁新华. 口腔局部麻醉药抗菌机制的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 74-81.
[2] 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394.
[3] 高宇天,苏勤. 酸性氧化电位水在根管治疗中的研究与应用[J]. 国际口腔医学杂志, 2023, 50(4): 401-406.
[4] 陈艺菲,张滨婧,冯淑琦,徐锐,杨淑娴,李雨庆. 黄酮类化合物对口腔微生物的影响及其机制[J]. 国际口腔医学杂志, 2023, 50(2): 210-216.
[5] 张曦丹,孙吉宇,付馨靓,甘雪琦. 介孔硅酸钙纳米材料在牙体牙髓及颅颌面修复领域的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 476-482.
[6] 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340.
[7] 陈亮,丁一,孟姝. 宿主调节治疗在牙周病治疗中的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 706-710.
[8] 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444.
[9] 吴秋月,李治邦. 药物辅助治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 471-477.
[10] 蒋晓鸽,吴家馨,裴锡波. 金属-有机骨架及其复合材料在生物医学领域中的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 552-557.
[11] 冯瑾,吴红崑. 抗菌牙科材料在根面龋治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 475-480.
[12] 刘梦齐,盖阔,蒋丽. 抗菌性口腔种植材料的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 516-521.
[13] 祁星颖,郑国莹,隋磊. 钛种植体表面形貌对成骨的影响[J]. 国际口腔医学杂志, 2018, 45(5): 527-533.
[14] 孟阳,王柳然,唐秋玲,丁小函,岳轶云,刘东宁,于维先. 荧光碳点在细菌成像及抗菌领域应用的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 566-570.
[15] 刘丹, 任彪, 程磊. 纳米银在口腔感染性疾病防治中的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 408-413.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .