国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (6): 673-677.doi: 10.7518/gjkq.2018.06.009

• 材料学专栏 • 上一篇    下一篇

石墨烯及其衍生物改性复合材料促成骨机制和应用的研究进展

李婷婷,张玉峰(),王若茜,黄智庆,谢律,薛艺凡,王宇蓝   

  1. 口腔基础医学省部共建国家重点实验室培育基地和口腔生物医学教育部重点实验室 武汉大学口腔医学院 武汉 430079
  • 收稿日期:2017-11-02 修回日期:2018-05-23 出版日期:2018-11-01 发布日期:2018-11-15
  • 通讯作者: 张玉峰
  • 作者简介:李婷婷,学士,Email: 2064448467@qq.com
  • 基金资助:
    武汉大学自主科研交叉项目(2042017kf0207);湖北省技术创新专项重点项目(2017AHB046)

Mechanism and application of osteogenesis induced by graphene and its derivatives modified composite materials

Tingting Li,Yufeng Zhang(),Ruoxi Wang,Zhiqing Huang,Lü Xie,Yifan Xue,Yulan Wang   

  1. State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatolgy, Wuhan University, Wuhan 430079, China
  • Received:2017-11-02 Revised:2018-05-23 Online:2018-11-01 Published:2018-11-15
  • Contact: Yufeng Zhang
  • Supported by:
    This study was supported by Fundamental Research Funds for the Central Universities(2042017kf0207);The Special Fund for Technical Innovation of Hubei Province(2017AHB046)

摘要:

自体或异体骨移植是治疗骨缺损的有效方法,但仍存在感染、免疫排斥等问题。骨组织工程一直致力于通过不同材料诱导干细胞向成骨方向分化,以修复各种因素造成的骨缺损。将石墨烯及其衍生物负载在支架材料上能显著增强现有支架材料的生物相容性,并促进干细胞的黏附、增殖及成骨分化。本文对近年来石墨烯及其衍生物改性复合材料在成骨分化方面应用的研究进展进行综述,为石墨烯在骨组织工程中的应用提供新思路。

关键词: 石墨烯, 石墨烯衍生物, 成骨分化, 骨再生

Abstract:

For a long time, autogenous bone graft is widely used in clinic and was verified to be effective in treating bone defects, but this technique is not perfect for the difficulty in healing of the donate site, immune rejection and infection. Bone tissue engineering approaches aims to aid the regeneration of bone tissues by filling the bone defects with different scaffolds which is able to induce the osteogenic differentiation of bone marrow stem cells. It is reported in former researches that graphene coating can significantly enhance the biocompatibility, cell adhesion and differentiation of scaffolds. In this review, we focused on the application of scaffolds modified with graphene and its derivatives to promote osteogenic differentiation published in recent years to providing new ideas for bone tissue regeneration.

Key words: graphene, grapheme derivatives, osteogenic differentiation, osteogenesis

中图分类号: 

  • R687.3 +4
[1] Novoselov KS, Geim AK, Morozov SV , et al. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666-669.
doi: 10.1126/science.1102896
[2] Lee CG, Wei XD, Kysar JW , et al. Measurement of the elastic properties and intrinsic strength of mono-layer graphene[J]. Science, 2008,321(5887):385-388.
doi: 10.1126/science.1157996 pmid: 18635798
[3] Balandin AA, Ghosh S, Bao WZ , et al. Superior the- rmal conductivity of single-layer graphene[J]. Nano Lett, 2008,8(3):902-907.
doi: 10.1021/nl0731872 pmid: 18284217
[4] Jastrzębska AM, Kurtycz P, Olszyna AR . Recent advances in graphene family materials toxicity inves-tigations[J]. J Nanopart Res, 2012,14(12):1320.
doi: 10.1007/s11051-012-1320-8 pmid: 23239936
[5] Schinwald A, Murphy F, Askounis A , et al. Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung[J]. Nanotoxicology, 2014,8(8):824-832.
doi: 10.3109/17435390.2013.831502 pmid: 23924429
[6] Pan LL, Pei XB, He R , et al. Multiwall carbon nano-tubes/polycaprolactone composites for bone tissue engineering application[J]. Colloids Surf B Bioin-terfaces, 2012,93:226-234.
doi: 10.1016/j.colsurfb.2012.01.011 pmid: 22305638
[7] La WG, Park S, Yoon HH , et al. Delivery of a thera-peutic protein for bone regeneration from a substrate coated with graphene oxide[J]. Small, 2013,9(23):4051-4060.
doi: 10.1002/smll.201300571 pmid: 23839958
[8] Jung HS, Lee T, Kwon IK , et al. Surface modifica-tion of multipass caliber-rolled Ti alloy with dexa-methasone-loaded graphene for dental applications[J]. ACS Appl Mater Interfaces, 2015,7(18):9598-9607.
doi: 10.1021/acsami.5b03431 pmid: 25909563
[9] 魏丽君, 曹均凯, 李俊杰 , 等. 低聚乙二醇富马酸酯/氧化石墨烯复合水凝胶对大鼠骨髓间充质干细胞成骨分化的调控作用[J]. 解放军医学院学报, 2016,37(6):611-616, 633.
doi: 10.3969/j.issn.2095-5227.2016.06.023
Wei LJ, Cao JK, Li JJ , et al. Effects of oligo [poly (ethylene glycol) fumarate]/graphene oxide on osteo-genic differentiation of bone marrow mesenchymal stem cells in rats[J]. Acad J Chin PLA Med School, 2016,37(6):611-616, 633.
doi: 10.3969/j.issn.2095-5227.2016.06.023
[10] 齐元园 . 石墨烯聚合物复合材料在组织工程支架及药物载体中的应[D]. 兰州: 兰州大学, 2012.
Qi YY . Applications of graphene/polymer composites in tissue engineering scaffold and drug carrier[D]. Lanzhou: Lanzhou University, 2012.
[11] Wang CH, Guo ZS, Pang F , et al. Effects of graphene modification on the bioactivation of polyethylene-terephthalate-based artificial ligaments[J]. ACS Appl Mater Interfaces, 2015,7(28):15263-15276.
doi: 10.1021/acsami.5b02893 pmid: 26111253
[12] Duan S, Yang XP, Mei F , et al. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials[J]. J Biomed Mater Res A, 2015,103(4):1424-1435.
doi: 10.1002/jbm.a.35283 pmid: 25046153
[13] Ramezanzadeh B, Ghasemi E, Mahdavian M , et al. Covalently-grafted graphene oxide nanosheets to improve barrier and corrosion protection properties of polyurethane coatings[J]. Carbon, 2015,93:555-573.
doi: 10.1016/j.carbon.2015.05.094
[14] 韩笑, 董玉华, 周琼 . 氧化石墨烯/聚偏氟乙烯复合涂层的机械性能与防腐性研究[J]. 涂料工业, 2016,46(5):1-6.
Han X, Dong YH, Zhou Q . Investigation of mechanical and anticorrosion properties of graphene oxide/poly-vinylidene fluoride composite coating[J]. Paint Coat Ind, 2016,46(5):1-6.
[15] Yoon HH, Bhang SH, Kim T , et al. Dual roles of graphene oxide in chondrogenic differentiation of adult stem cells: cell-adhesion substrate and growth factor-delivery carrier[J]. Adv Funct Mater, 2014,24(41):6455-6464.
doi: 10.1002/adfm.201400793
[16] Gu M, Liu YS, Chen T , et al. Is graphene a promising nanomaterial for promoting surface modi-fication of implants or scaffold materials in bone tissue engine-ering[J]. Tissue Eng Part B, 2014,20(5):477-491.
doi: 10.1089/ten.TEB.2013.0638 pmid: 4186769
[17] Sniadecki NJ, Desai RA, Ruiz SA , et al. Nanotechno-logy for cell-substrate interactions[J]. Ann Biomed Eng, 2006,34(1):59-74.
doi: 10.1007/s10439-005-9006-3 pmid: 16525764
[18] Kumar S, Raj S, Sarkar K , et al. Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration[J]. Nanoscale, 2016,8(12):6820-6836.
doi: 10.1039/c5nr06906h pmid: 26955801
[19] Nayak TR, Andersen H, Makam VS , et al. Graphene for controlled and accelerated osteogenic differentia-tion of human mesenchymal stem cells[J]. ACS Nano, 2011,5(6):4670-4678.
doi: 10.1021/nn200500h
[20] Depan D, Misra RD . The interplay between nanos-tructured carbon-grafted chitosan scaffolds and pro-tein adsorption on the cellular response of osteob-lasts: structure-function property relationship[J]. Acta Biomater, 2013,9(4):6084-6094.
doi: 10.1016/j.actbio.2012.12.019 pmid: 23261921
[21] Jia ZJ, Shi YY, Xiong P , et al. From solution to biointerface: graphene self-assemblies of varying lateral sizes and surface properties for biofilm control and osteodifferentiation[J]. ACS Appl Mater Interfaces, 2016,8(27):17151-17165.
doi: 10.1021/acsami.6b05198 pmid: 27327408
[22] Lee WC, Lim CH, Shi H , et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide[J]. ACS Nano, 2011,5(9):7334-7341.
doi: 10.1021/nn202190c pmid: 21793541
[23] 吕成奇, 陆家瑜, 于佳 , 等. 自撑式石墨烯水凝胶诱导人脂肪干细胞成骨分化的体外研究[J]. 口腔医学, 2014,34(7):486-491.
Lü CQ, Lu JY, Yu J , et al. In vitro effects of self-sustaining graphene hydrogel film on the osteogenic differentiation of human adipose-derived stem cells[J]. Stomatology, 2014,34(7):486-491.
[24] Lee JH, Shin YC, Jin OS , et al. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells[J]. Nanoscale, 2015,7(27):11642-11651.
doi: 10.1039/c5nr01580d pmid: 26098486
[25] Usui Y, Aoki K, Narita N , et al. Carbon nanotubes with high bone-tissue compatibility and bone-forma-tion acceleration effects[J]. Small, 2008,4(2):240-246.
doi: 10.1002/smll.200700670 pmid: 18205152
[26] Mahamid JL, Aichmayer B, Shimoni E , et al. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebra-fish fin rays[J]. Proc Natl Acad Sci USA, 2010,107(14):6316-6321.
doi: 10.1073/pnas.0914218107 pmid: 20308589
[27] Goriainov V, Cook R, Latham JM , et al. Bone and metal: an orthopaedic perspective on osseointegration of metals[J]. Acta Biomater, 2014,10(10):4043-4057.
doi: 10.1016/j.actbio.2014.06.004 pmid: 24932769
[28] 初可嘉, 刘建国, 吴迪 , 等. 成熟期成釉细胞功能的研究进展[J]. 口腔医学研究, 2013,29(8):783-785.
Chu KJ, Liu JG, Wu D , et al. Research progress on ameloblastoma function at mature stage[J]. J Oral Sci Res, 2013,29(8):783-785.
[29] Zhang YB, Petibone D, Xu Y , et al. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine[J]. Drug Metab Rev, 2014,46(2):232-246.
doi: 10.3109/03602532.2014.883406 pmid: 24506522
[30] Chang YL, Yang ST, Liu JH , et al. In vitro toxicity evaluation of graphene oxide on A549 cells[J]. Toxicol Lett, 2011,200(3):201-210.
doi: 10.1016/j.toxlet.2010.11.016 pmid: 21130147
[31] Lu CH, Zhu CL, Li J , et al. Using graphene to protect DNA from cleavage during cellular delivery[J]. Chem Commun (Camb), 2010,46(18):3116-3118.
doi: 10.1039/b926893f pmid: 20424750
[32] 沈贺, 张立明, 张智军 . 石墨烯在生物医学领域的应用[J]. 东南大学学报(医学版), 2011,30(1):218-223.
doi: 10.3969/j.issn.1671-6264.2011.01.035
Shen H, Zhang LM, Zhang ZJ . The application of graphene in the field of biomedicine[J]. J Southeast Univ (Med Sci Ed), 2011,30(1):218-223.
doi: 10.3969/j.issn.1671-6264.2011.01.035
[33] Ruiz ON, Fernando KA, Wang BJ , et al. Graphene oxide: a nonspecific enhancer of cellular growth[J]. ACS Nano, 2011,5(10):8100-8107.
doi: 10.1021/nn202699t pmid: 21932790
[34] Zhang S, Yang K, Feng LZ , et al. In vitro and In vitro behaviors of dextran functionalized graphene[J]. Carbon, 2011,49(12):4040-4049.
doi: 10.1016/j.carbon.2011.05.056
[1] 常欣楠,刘磊. 生物可降解镁基材料在颅颌面外科的应用及其研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 107-115.
[2] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[3] 蒋青松,赖文莉,王艳. 骨增量技术在口腔正畸领域的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 243-250.
[4] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[5] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632.
[6] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[7] 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488.
[8] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[9] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[10] 李嫣斐,张新春. 牙本质作为骨修复材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 197-203.
[11] 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744.
[12] 刘娟,陈斌,闫福华. 富血小板血浆和浓缩生长因子对人牙周膜细胞增殖和成骨分化影响的研究[J]. 国际口腔医学杂志, 2021, 48(5): 520-527.
[13] 刘嘉程,孟昭松,李宏捷,隋磊. 卵泡抑素在口腔颌面部发育中的作用及其治疗应用前景[J]. 国际口腔医学杂志, 2021, 48(5): 556-562.
[14] 赵文俊,陈宇. 引导组织/骨再生牙周功能梯度膜的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 391-397.
[15] 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .