国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (2): 209-213.doi: 10.7518/gjkq.2018.02.015

• 综述 • 上一篇    下一篇

双甲基丙烯酸二缩三乙二醇酯细胞毒性的研究进展

陈秀春, 张志民, 洪丽华, 张雅琪, 郑鹏, 李文月   

  1. 吉林省牙发育及颌骨重塑与再生重点实验室
    吉林大学口腔医院牙体牙髓病科 长春 130021
  • 收稿日期:2017-08-31 修回日期:2017-12-20 出版日期:2018-03-01 发布日期:2018-03-01
  • 通讯作者: 张志民,教授,博士,Email:zhangzm1964@sina.com
  • 作者简介:陈秀春,硕士,Email:532537478@qq.com
  • 基金资助:
    吉林省产业创新专项资金(2016c045-3)

Cytotoxic mechanism of triethylene glycol dimethacrylate

Chen Xiuchun, Zhang Zhimin, Hong Lihua, Zhang Yaqi, Zheng Peng, Li Wenyue   

  1. Key Laboratory for Tooth Development and Jaw Reconstruction and Regeneration of Jilin Province
    Dept. of Conservative Dentistry and Endodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
  • Received:2017-08-31 Revised:2017-12-20 Online:2018-03-01 Published:2018-03-01
  • Supported by:
    This study was supported by the Special Funds for Provincial Industrial Innovation in Jilin Province (2016c045-3).

摘要: 细胞毒性是一种由细胞或化学物质引起的单纯细胞杀伤事件,是化学物质作用于细胞基本结构和/或生理过程,如细胞膜或细胞骨架结构,细胞的新陈代谢过程,细胞组分或产物的合成、降解或释放,离子调控及细胞分裂等过程,导致细胞存活、增殖和/或功能的紊乱,从而引发的不良反应。双甲基丙烯酸二缩三乙二醇酯(TEGDMA)是牙科树脂材料中常用的稀释单体,也是树脂基质成分中引起细胞毒性的重要相关单体,可以引起细胞体内氧化平衡失调、细胞凋亡、DNA损伤等一系列毒性反应。本文就TEGDMA引起的细胞毒性研究进展进行综述,旨在为进一步明确其产生毒性的机制,减弱或消除其毒性作用奠定基础。

关键词: 双甲基丙烯酸二缩三乙二醇酯, 氧化应激, 细胞毒性, 基因毒性, 细胞凋亡

Abstract: Cell toxicity is a pure cell killing event caused by a cell or chemical substances. The chemical substances act on the basic structure of the cell and/or physiological processes, such as cell membrane and cytoskeleton structure, cell metabolism, synthesis of cellular components or products, degradation or release, ion regulation and cell division. Which leads to adverse reactions such as cell survival, proliferation and/or functional disorder. Triethylene glycol dimethacrylate (TEGDMA) is a commonly used diluent of many resin-based dental composites. It is an important relevant monomer responsible for the cytotoxicity of the resin matrix. The monomer can lead to a series of toxic reactions, such as oxidative imbalance, apoptosis, DNA damage and so on. In this paper, the research advances in mechanism of cytotoxicity induced by TEGDMA monomer is reviewed, the aim is to lay the foundation for further clarifying the mechanism of toxicity and to reduce or eliminate the toxic effect.

Key words: triethylene glycol dimethacrylate, oxidative stress, cytotoxicity, gene toxicity, apoptosis

中图分类号: 

  • Q256
[1] Geurtsen W, Leyhausen G.Chemical-biological interactions of the resin monomer triethyleneglycol-dimethacrylate (TEGDMA)[J]. J Dent Res, 2001, 80(12):2046-2050.
[2] Volk J, Engelmann J, Leyhausen G, et al.Effects of three resin monomers on the cellular glutathione concentration of cultured human gingival fibroblasts[J]. Dent Mater, 2006, 22(6):499-505.
[3] Chang HH, Chang MC, Huang GF, et al.Effect of triethylene glycol dimethacrylate on the cytotoxicity, cyclooxygenase-2 expression and prostanoids pro-duction in human dental pulp cells[J]. Int Endod J, 2012, 45(9):848-858.
[4] Volk J, Leyhausen G, Geurtsen W.Glutathione level and genotoxicity in human oral keratinocytes ex-posed to TEGDMA[J]. J Biomed Mater Res Part B Appl Biomater, 2012, 100(2):391-399.
[5] Lee DH, Lim BS, Lee YK, et al.Involvement of oxidative stress in mutagenicity and apoptosis caused by dental resin monomers in cell cultures[J]. Dent Mater, 2006, 22(12):1086-1092.
[6] Huang FM, Kuan YH, Lee SS, et al.Cytotoxicity and genotoxicity of triethyleneglycol-dimethacrylate in macrophages involved in DNA damage and caspases activation[J]. Environ Toxicol, 2015, 30(5):581-588.
[7] Schweikl H, Hartmann A, Hiller KA, et al.Inhibition of TEGDMA and HEMA-induced genotoxicity and cell cycle arrest by N-acetylcysteine[J]. Dent Mater, 2007, 23(6):688-695.
[8] Schweikl H, Altmannberger I, Hanser N, et al.The effect of triethylene glycol dimethacrylate on the cell cycle of mammalian cells[J]. Biomaterials, 2005, 26(19):4111-4118.
[9] Samuelsen JT, Dahl JE, Karlsson S, et al.Apoptosis induced by the monomers HEMA and TEGDMA involves formation of ROS and differential activation of the MAP-kinases p38, JNK and ERK[J]. Dent Mater, 2007, 23(1):34-39.
[10] Spagnuolo G, Desiderio C, Rivieccio V, et al.In vitro cellular detoxification of triethylene glycol dimethacrylate by adduct formation with N-acety-lcysteine[J]. Dent Mater, 2013, 29(8):e153-e160.
[11] Ginzkey C, Zinnitsch S, Steussloff G, et al.Assess-ment of HEMA and TEGDMA induced DNA damage by multiple genotoxicological endpoints in human lymphocytes[J]. Dent Mater, 2015, 31(8):865-876.
[12] Janke V, von Neuhoff N, Schlegelberger B, et al. TEGDMA causes apoptosis in primary human gin-gival fibroblasts[J]. J Dent Res, 2003, 82(10):814-818.
[13] Batarseh G, Windsor LJ, Labban NY, et al.Triethy-lene glycol dimethacrylate induction of apoptotic proteins in pulp fibroblasts[J]. Oper Dent, 2014, 39(1):E1-E8.
[14] Iwama K, Nakajo S, Aiuchi T, et al.Apoptosis in-duced by arsenic trioxide in leukemia U937 cells is dependent on activation of p38, inactivation of ERK and the Ca2+-dependent production of superoxide[J]. Int J Cancer, 2001, 92(4):518-526.
[15] Srinivasula SM, Datta P, Fan XJ, et al.Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway[J]. J Biol Chem, 2000, 275(46):36152-36157.
[16] Gallorini M, Sancilio S, Zara S, et al.Involvement of mitochondrial signalling pathway in HGFs/S. mitis coculture response to TEGDMA treatment[J]. J Bio-med Mater Res A, 2014, 102(11):3931-3938.
[17] Hatok J, Racay P.Bcl-2 family proteins: master re-gulators of cell survival[J]. Biomol Concepts, 2016, 7(4):259-270.
[18] Schmalz G, Krifka S, Schweikl H.Toll-like recep-tors, LPS, and dental monomers[J]. Adv Dent Res, 2011,23(3):302-306.
[19] Schweikl H, Hiller KA, Eckhardt A, et al.Differen-tial gene expression involved in oxidative stress response caused by triethylene glycol dimethacry-late[J]. Biomaterials, 2008, 29(10):1377-1387.
[20] Eckhardt A, Gerstmayr N, Hiller KA, et al.TEG-DMA-induced oxidative DNA damage and activation of ATM and MAP kinases[J]. Biomaterials, 2009, 30(11):2006-2014.
[21] Krifka S, Spagnuolo G, Schmalz G, et al.A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers[J]. Biomaterials, 2013, 34(19):4555-4563.
[22] Yamada M, Ueno T, Minamikawa H, et al.N-acetyl cysteine alleviates cytotoxicity of bone substitute[J]. J Dent Res, 2010, 89(4):411-416.
[23] Galler KM, Schweikl H, Hiller KA, et al.TEGDMA reduces mineralization in dental pulp cells[J]. J Dent Res, 2011, 90(2):257-262.
[24] Kim NR, Lim BS, Park HC, et al.Effects of N- acetylcysteine on TEGDMA- and HEMA-induced suppression of osteogenic differentiation of human osteosarcoma MG63 cells[J]. J Biomed Mater Res Part B Appl Biomater, 2011, 98(2):300-307.
[25] Schweikl H, Spagnuolo G, Schmalz G.Genetic and cellular toxicology of dental resin monomers[J]. J Dent Res, 2006, 85(10):870-877.
[26] Zhang QM, Nakamura N, Yonekura S, et al.Biolo-gical consequences and base excision repair me-chanisms of oxidative base damage in DNA[J]. Tanpakushitsu Kakusan Koso, 2005, 50(4):322-329.
[27] Nowsheen S, Yan ES.The intersection between DNA damage response and cell death pathways[J]. Exp Oncol, 2012(3):243-254.
[28] Eckhardt A, Müller P, Hiller KA, et al.Influence of TEGDMA on the mammalian cell cycle in compa-rison with chemotherapeutic agents[J]. Dent Mater, 2010, 26(3):232-241.
[29] Mavrogonatou E, Eliades T, Eliades G, et al.The effect of triethylene glycol dimethacrylate on p53-dependent G2 arrest in human gingival fibroblasts[J]. Biomaterials, 2010, 31(33):8530-8538.
[30] Durner J, Dębiak M, Bürkle A, et al.Induction of DNA strand breaks by dental composite components compared to X-ray exposure in human gingival fibroblasts[J]. Arch Toxicol, 2011, 85(2):143-148.
[31] Nocca G, Ragno R, Carbone V, et al.Identification of glutathione-methacrylates adducts in gingival fibroblasts and erythrocytes by HPLC-MS and capil-lary electrophoresis[J]. Dent Mater, 2011,27(5):e87-e98.
[1] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[2] 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394.
[3] 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528.
[4] 张静怡,李丹薇,孙宇,雷雅燕,刘涛,龚瑜. 复合树脂及复合体对成骨细胞毒性及成骨向分化的影响[J]. 国际口腔医学杂志, 2022, 49(4): 412-419.
[5] 丁旭,李鑫,李艳,夏博园,于维先. 氧化应激和线粒体质量控制与牙周炎关系的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 385-390.
[6] 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340.
[7] 周丰,陈野,陈晨,张奕宁,耿瑞蔓,刘戟. 沉默信息调节因子1调控牙周炎发生发展的机制[J]. 国际口腔医学杂志, 2021, 48(3): 341-346.
[8] 杨卓,张盛丹,刘程程,丁一. 侵袭性牙周炎唾液诊断标记物的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 55-61.
[9] 吴东蕾,刘静. 氧化应激损伤与口腔疾病相关性的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 62-67.
[10] 张鹏, 丁一, 王琪. 炎性衰老在糖尿病牙周炎中的作用机制及研究现状[J]. 国际口腔医学杂志, 2017, 44(6): 664-668.
[11] 于文雯,王旭,孙新华. 正畸金属矫治器的生物安全性研究进展[J]. 国际口腔医学杂志, 2015, 42(5): 592-596.
[12] 朱玉婷 刘江峰 李晓星 杨会肖 黄江勇 于淼 陈秉勋 李艳利. 脂多糖上调人牙髓细胞B细胞淋巴瘤-2蛋白及其相关X蛋白的表达[J]. 国际口腔医学杂志, 2015, 42(4): 391-394.
[13] 吴雨鸿,林居红,张红梅. 三氧化聚合物与波特兰水门汀的理化和生物学性能及其应用[J]. 国际口腔医学杂志, 2014, 41(6): 699-702.
[14] 颜雯 李伟. 常用根管充填材料的细胞毒性和基因毒性[J]. 国际口腔医学杂志, 2013, 40(5): 608-611.
[15] 刘盘龙1 周红艳2 王东苗3 梅予锋2. 氟牙症发病机制的研究进展[J]. 国际口腔医学杂志, 2013, 40(1): 94-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .