国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (4): 484-487.doi: 10.7518/gjkq.2017.04.022

• 综述 • 上一篇    下一篇

核苷酸结合寡聚化结构域样受体家族热蛋白结构域3炎性小体与牙周炎

王娜娜, 陈莉丽, 丁佩惠   

  1. 浙江大学医学院第二附属医院口腔科 杭州 310006
  • 收稿日期:2016-09-01 修回日期:2017-02-22 出版日期:2017-07-01 发布日期:2017-07-01
  • 通讯作者: 丁佩惠,教授,博士,Email:phding@163.com
  • 作者简介:王娜娜,硕士,Email:nana_199210@163.com
  • 基金资助:
    国家自然科学基金(81271142,81400510)

Nucleotide-binding oligomerization domain-like-receptor family pyrin domain 3 inflammasome and periodontitis

Wang Nana, Chen Lili, Ding Peihui   

  1. Dept. of Stomatology, The Affiliated Second Hospital of Medical School, Zhejiang University, Hangzhou 310006, China
  • Received:2016-09-01 Revised:2017-02-22 Online:2017-07-01 Published:2017-07-01
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(81271142, 81400510).

摘要: 核苷酸结合寡聚化结构域样受体家族热蛋白结构域(NLRP)3被激活后形成炎性小体,NLRP3炎性小体活化半胱氨酸天冬酰胺特异蛋白酶-1并进一步活化白细胞介素(IL)-1β前体,促进IL-1β释放以介导病原微生物的清除及相关程序性细胞死亡。IL-1β表达过量会造成牙髓炎、根尖周炎、牙周炎、牙槽骨丧失和口腔黏膜疾病的进一步发展。龈下菌斑与牙周炎密切相关,在龈下菌斑密度较高时,NLRP3炎性小体表达降低,炎性因子分泌减少,宿主对细菌的抵抗及清除力降低,有利于细菌的继续生存与定植。在根尖周炎和牙周炎的骨质破坏过程中,NLRP3炎性小体作为胞壁酰二肽及其分解产物的受体参与骨质吸收。调控NLRP3炎性小体及其下游炎性因子的表达,可能成为牙周炎治疗的方向之一。

关键词: 牙周炎, 核苷酸结合寡聚化结构域样受体家族热蛋白结构域3炎性小体, 白细胞介素

Abstract: Studies have shown that periodontitis has a certain relationship with nucleotide-binding oligomerization domain-like receptor family pyrin domain(NLRP)3 inflammasome. NLRP3 inflammasome plays an important role in the immune defense reaction of periodontal disease through regulating the release of interleukin(IL)-1β. NLRP3 inflammasome is comprised of NLRP3, apoptosis-associated speck-like protein, and cysteinyl aspartate-specific protease-1 and could promote the release of cytokines, thus removing pathogens and causing cell-related apoptosis. NLRP3 inflammasome is relevant with many oral diseases, such as chronic pulpitis and chronic apical periodontitis. This review will focus on NLRP3 inflammasome and its relevance with periodontitis.

Key words: periodontitis, nucleotide-binding oligomerization domain-like-receptor family pyrin domain 3 inflammasome, interleukin

中图分类号: 

  • R781.4+2
[1] Kebschull M, Demmer RT, Papapanou PN. “Gum bug, leave my heart alone!”—epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis[J]. J Dent Res, 2010, 89(9):879- 902.
[2] Madianos PN, Bobetsis YA, Offenbacher S. Adverse pregnancy outcomes(APOs) and periodontal disease: pathogenic mechanisms[J]. J Periodontol, 2013, 84(4 Suppl):S170-S180.
[3] Janssen KM, Vissink A, de Smit MJ, et al. Lessons to be learned from periodontitis[J]. Curr Opin Rheu-matol, 2013, 25(2):241-247.
[4] Franchi L, Eigenbrod T, Muñoz-Planillo R, et al. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease patho-genesis[J]. Nat Immunol, 2009, 10(3):241-247.
[5] Schroder K, Tschopp J. The inflammasomes[J]. Cell, 2010, 140(6):821-832.
[6] Mariathasan S, Weiss DS, Newton K, et al. Cryop-yrin activates the inflammasome in response to to-xins and ATP[J]. Nature, 2006, 440(7081):228-232.
[7] Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family[J]. Annu Rev Immunol, 2009, 27:519-550.
[8] Hoffman HM, Wanderer AA. Inflammasome and IL-1beta-mediated disorders[J]. Curr Allergy Asthma Rep, 2010, 10(4):229-235.
[9] Kanneganti TD, Özören N, Body-Malapel M, et al. Bacterial RNA and small antiviral compounds ac-tivate caspase-1 through cryopyrin/Nalp3[J]. Nature, 2006(7081):233-236.
[10] Song-Zhao GX, Srinivasan N, Pott J, et al. Nlrp3 activation in the intestinal epithelium protects against a mucosal pathogen[J]. Mucosal Immunol, 2014, 7 (4):763-774.
[11] Rehaume LM, Jouault T, Chamaillard M. Lessons from the inflammasome: a molecular sentry linking Candida and Crohn’s disease[J]. Trends Immunol, 2010, 31(5):171-175.
[12] Zaki MH, Boyd KL, Vogel P, et al. The NLRP3 in-flammasome protects against loss of epithelial in-tegrity and mortality during experimental colitis[J]. Immunity, 2010, 32(3):379-391.
[13] Kummer JA, Broekhuizen R, Everett H, et al. In-flammasome components NALP 1 and 3 show dis-tinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response[J]. J Histochem Cytochem, 2007, 55(5): 443-452.
[14] Belibasakis GN, Meier A, Guggenheim B, et al. Oral biofilm challenge regulates the RANKL-OPG system in periodontal ligament and dental pulp cells[J]. Mic-rob Pathog, 2011, 50(1):6-11.
[15] Brandtzaeg P. Inflammatory bowel disease: clinics and pathology. Do inflammatory bowel disease and periodontal disease have similar immunopathogeneses [J]. Acta Odontol Scand, 2001, 59(4):235-243.
[16] Darveau RP, Hajishengallis G, Curtis MA. Porphy-romonas gingivalis as a potential community activist for disease[J]. J Dent Res, 2012, 91(9):816-820.
[17] Bostanci N, Emingil G, Saygan B, et al. Expression and regulation of the NALP3 inflammasome com-plex in periodontal diseases[J]. Clin Exp Immunol, 2009, 157(3):415-422.
[18] Park E, Na HS, Song YR, et al. Activation of NLRP3 and AIM2 inflammasomes by Porphyromonas gin-givalis infection[J]. Infect Immun, 2014, 82(1):112- 123.
[19] Gamonal J, Acevedo A, Bascones A, et al. Levels of interleukin-1β, -8, and -10 and RANTES in gingival crevicular fluid and cell populations in adult perio-dontitis patients and the effect of periodontal treat-ment[J]. J Periodontol, 2000, 71(10):1535-1545.
[20] Yilmaz O, Sater AA, Yao L, et al. ATP-dependent activation of an inflammasome in primary gingival epithelial cells infected by Porphyromonas gingivalis [J]. Cell Microbiol, 2010, 12(2):188-198.
[21] Bostanci N, Meier A, Guggenheim B, et al. Regula-tion of NLRP3 and AIM2 inflammasome gene ex-pression levels in gingival fibroblasts by oral bio-films[J]. Cell Immunol, 2011, 270(1):88-93.
[22] Safavi KE, Nichols FC. Effects of a bacterial cell wall fragment on monocyte inflammatory function [J]. J Endod, 2000, 26(3):153-155.
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668.
[3] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[4] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[5] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[6] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[7] 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31.
[8] 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528.
[9] 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592.
[10] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
[11] 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440.
[12] 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316.
[13] 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355.
[14] 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248.
[15] 白慧敏,张雨薇,孟姝,刘程程. 特异性促炎症消退介质在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 85-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .