国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (2): 217-223.doi: 10.7518/gjkq.2023038

• 综述 • 上一篇    下一篇

遗传性牙龈纤维瘤病相关致病基因研究进展

乔煜轩1(),李英1,2()   

  1. 1.山西医科大学口腔医学院·口腔医院 太原 030001
    2.山西医科大学第一医院口腔修复科 太原 030001
  • 收稿日期:2022-07-27 修回日期:2022-10-04 出版日期:2023-03-01 发布日期:2023-03-14
  • 通讯作者: 李英
  • 作者简介:乔煜轩,住院医师,硕士,Email:2356230680@qq.com

Research progress on the genes related of the hereditary gingival fibromatosis

Qiao Yuxuan1(),Li Ying1,2()   

  1. 1.Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
    2.Dept. of Prosthodontics, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2022-07-27 Revised:2022-10-04 Online:2023-03-01 Published:2023-03-14
  • Contact: Ying Li

摘要:

遗传性牙龈纤维瘤病是一种罕见的口腔遗传疾病,其主要特征为牙龈缓慢渐进性增生,严重影响咀嚼、语音、美观及心理健康。近年来随着分子生物学发展以及测序技术不断进步,对遗传性牙龈纤维瘤病的研究广泛进入到基因层面。虽然遗传性牙龈纤维瘤病致病机制尚不完全明确,但国内外对遗传性牙龈纤维瘤病致病基因的探索已有大量成果,目前缺少相关方面的整理与回顾。本文针对国内外对遗传性牙龈纤维瘤病染色体变异区域、致病基因及候选基因研究现状及其在遗传性牙龈纤维瘤病中的作用机制进行综述。

关键词: 遗传性牙龈纤维瘤病, 染色体, 基因, 研究进展, 遗传疾病

Abstract:

Hereditary gingival fibromatosis (HGF) is a rare oral genetic disease characterized by slow progressive gingival proliferation, which seriously affects chewing, speech, aesthetics and mental health. In recent years, with the deve-lopment of molecular biology and continuous progress of sequencing technology, the study of hereditary gingival fibromatosis has entered the genetic level. At present, the pathogenic mechanism of hereditary gingival fibromatosis is notentirelyclear. Meanwhile, there are a lot of results in the exploration of the pathogenic genes of hereditary gingival fibromatosis at home and abroad, but there is a lack of collation and review of relevant aspects. This paper reviews the research status of chromosomal variation regions, pathogenic genes and candidate genes in hereditary.

Key words: hereditary gingival fibromatosis, chromosome, gene, research progress, genetic disease

中图分类号: 

  • R 34

表 1

sHGF相关致病基因*"

疾病名称遗传特性#致病基因染色体定位OMIM编号
HTC1ARABCA517q24.2-q24.3135400
HTC2XLDXq27.1307150
CavipmrAREMC11p36.13616875
DRS2ADDVL11p36.33616331
Ramon综合征AR266270
HFSARANTXR24q21.21228600
Cowden综合征ADPTEN10q23.31158350
Cross综合征AR257800
MANSAARMAN2B119p13.13248500
CSTLOADHRAS11p15.5218040
黏脂贮积症Ⅱ型ARIDUA4p16.3607014
遗传性釉质发育不全ⅢAADFAM83H8q24.3130900
遗传性釉质发育不全ⅠBADENAM4q13.3104500
SHFM1ADDLX57q21.3183600
多诺霍综合征ARINSR19p13.2147670
CFSMRARTMCO11q24.1213980
DRS3ADDVL33q27.1601368
AGUARAGA4q34.3208400
FTHSARSH3PXD2B5q35.1249420
EDSDERMSARADAMTS25q35.3225410
纤溶酶原缺乏Ⅰ型ARPLG6q26217090
ZLS1ADKCNH11q32.2135500
ZLS2ARATP6V1B28p21.3616455
RNSARFAM20C7p22.3259775
RRS1ARROR29q22.31268310
BBDSADFGFR210q26.13614592
CANTU综合征ADABCC912p12.1239850
MONAARMMP216q12.2259600

《中国口腔医学年鉴》2021年卷出版发行"

1 段小红. 口腔罕见病名录(第一版)[J]. 中华口腔医学杂志, 2020, 55(7): 494-500.
Duan XH. The first edition of oral rare diseases list[J]. Chin J Stomatol, 2020, 55(7): 494-500.
2 Gawron K, Łazarz-Bartyzel K, Potempa J, et al. Gingival fibromatosis: clinical, molecular and therapeutic issues[J]. Orphanet J Rare Dis, 2016, 11: 9.
3 Majumder P, Nair V, Mukherjee M, et al. The autosomal recessive inheritance of hereditary gingival fibromatosis[J]. Case Rep Dent, 2013, 2013: 432864.
4 Costa CRR, Braz SV, de Toledo IP, et al. Syndromes with gingival fibromatosis: a systematic review[J]. Oral Dis, 2021, 27(4): 881-893.
5 Hart TC, Pallos D, Bowden DW, et al. Genetic lin-kage of hereditary gingival fibromatosis to chromosome 2p21[J]. Am J Hum Genet, 1998, 62(4): 876-883.
6 Xiao S, Wang X, Qu B, et al. Refinement of the locus for autosomal dominant hereditary gingival fibromatosis (GINGF) to a 3.8-cM region on 2p21[J]. Genomics, 2000, 68(3): 247-252.
7 Xiao S, Bu L, Zhu L, et al. A new locus for hereditary gingival fibromatosis (GINGF2) maps to 5q13-Q22[J]. Genomics, 2001, 74(2): 180-185.
8 Ye X, Shi L, Cheng Y, et al. A novel locus for autosomal dominant hereditary gingival fibromatosis, GINGF3, maps to chromosome 2p22.3-p23.3[J]. Clin Genet, 2005, 68(3): 239-244.
9 Zhu YF, Zhang WX, Huo ZH, et al. A novel locus for maternally inherited human gingival fibromatosis at chromosome 11p15[J]. Hum Genet, 2007, 121(1): 113-123.
10 Bayram Y, White JJ, Elcioglu N, et al. REST final-exon-truncating mutations cause hereditary gingival fibromatosis[J]. Am J Hum Genet, 2017, 101(1): 149-156.
11 Hart TC, Zhang YZ, Gorry MC, et al. A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1[J]. Am J Hum Genet, 2002, 70(4): 943-954.
12 Huang WYC, Alvarez S, Kondo Y, et al. A molecular assembly phase transition and kinetic proofrea-ding modulate Ras activation by SOS[J]. Science, 2019, 363(6431): 1098-1103.
13 Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins[J]. Cell, 2007, 129(5): 865-877.
14 McCormick F. K-Ras protein as a drug target[J]. J Mol Med (Berl), 2016, 94(3): 253-258.
15 Krygowska AA, Castellano E. PI3K: a crucial piece in the RAS signaling puzzle[J]. Cold Spring Harb Perspect Med, 2018, 8(6): a031450.
16 Baltanás FC, Zarich N, Rojas-Cabañeros JM, et al. SOS GEFs in health and disease[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2): 188445.
17 Sini P, Cannas A, Koleske AJ, et al. Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation[J]. Nat Cell Biol, 2004, 6(3): 268-274.
18 Han SK, Kong J, Kim S, et al. Exomic and transcriptomic alterations of hereditary gingival fibromatosis[J]. Oral Dis, 2019, 25(5): 1374-1383.
19 Muñoz-Félix JM, Martínez-Salgado C. Dissecting the involvement of ras GTPases in kidney fibrosis[J]. Genes, 2021, 12(6): 800.
20 Jang SI, Lee EJ, Hart PS, et al. Germ line gain of function with SOS1 mutation in hereditary gingival fibromatosis[J]. J Biol Chem, 2007, 282(28): 20245-20255.
21 Gawron K, Bereta G, Nowakowska Z, et al. Analysis of mutations in the SOS-1 gene in two Polish families with hereditary gingival fibromatosis[J]. Oral Dis, 2017, 23(7): 983-989.
22 Kala N, Prasad H, Babu P, et al. Son of Sevenless-1 genetic status in an Indian family with nonsyndro-mic hereditary gingival fibromatosis[J]. J Indian Soc Periodontol, 2020, 24(3): 280-283.
23 贺秀芳, 许春姣, 田地, 等. 遗传性牙龈纤维瘤病一家族三代1例[J]. 华西口腔医学杂志, 2020, 38(1): 104-107.
He XF, Xu CJ, Tian D, et al. Hereditary gingival fibromatosis: a three-generation case report[J]. West China J Stomatol, 2020, 38(1): 104-107.
24 Garcia-Manteiga JM, D’Alessandro R, Meldolesi J. News about the role of the transcription factor REST in neurons: from physiology to pathology[J]. Int J Mol Sci, 2019, 21(1): 235.
25 Zhao YG, Zhu M, Yu YL, et al. Brain REST/NRSF is not only a silent repressor but also an active protector[J]. Mol Neurobiol, 2017, 54(1): 541-550.
26 Medellin B, Yang WJ, Konduri S, et al. Targeted covalent inhibition of small CTD phosphatase 1 to promote the degradation of the REST transcription factor in human cells[J]. J Med Chem, 2022, 65(1): 507-519.
27 Roman-Malo L, Bullon B, de Miguel M, et al. Fibroblasts collagen production and histological alte-rations in hereditary gingival fibromatosis[J]. Disea-ses, 2019, 7(2): 39.
28 Martelli-Junior H, Cotrim P, Graner E, et al. Effect of transforming growth factor-beta1, interleukin-6, and interferon-gamma on the expression of type Ⅰcollagen, heat shock protein 47, matrix metalloproteinase (MMP)-1 and MMP-2 by fibroblasts from normal gingiva and hereditary gingival fibromatosis[J]. J Periodontol, 2003, 74(3): 296-306.
29 Gawron K, Ochała-Kłos A, Nowakowska Z, et al. TIMP-1 association with collagen type Ⅰ overproduction in hereditary gingival fibromatosis[J]. Oral Dis, 2018, 24(8): 1581-1590.
30 Kong QR, Xie BT, Zhang H, et al. RE1-silencing transcription factor (REST) is required for nuclear reprogramming by inhibiting transforming growth factor β signaling pathway[J]. J Biol Chem, 2016, 291(53): 27334-27342.
31 Lin TP, Chang YT, Lee SY, et al. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling[J]. Oncotarget, 2016, 7(18): 26137-26151.
32 Wu J, Chen DN, Huang H, et al. A novel gene ZNF862 causes hereditary gingival fibromatosis[J]. Elife, 2022, 11: e66646.
33 Schwartz CJ, Dolgalev I, Yoon E, et al. Microglandular adenosis is an advanced precursor breast lesion with evidence of molecular progression to matrix-producing metaplastic carcinoma[J]. Hum Pathol, 2019, 85: 65-71.
34 Peng C, Cardenas A, Rifas-Shiman SL, et al. Epi-genome-wide association study of total serum immunoglobulin E in children: a life course approach[J]. Clin Epigenetics, 2018, 10: 55.
35 Hwang J, Kim YL, Kang S, et al. Genetic analysis of hereditary gingival fibromatosis using whole exome sequencing and bioinformatics[J]. Oral Dis, 2017, 23(1): 102-109.
36 Kameli R, Ashrafi MR, Ehya F, et al. Leukoence-phalopathy in RIN2 syndrome: novel mutation and expansion of clinical spectrum[J]. Eur J Med Genet, 2020, 63(1): 103629.
37 Kawashima Y, Nishimura R, Utsunomiya A, et al. Leprechaunism (Donohue syndrome): a case bea-ring novel compound heterozygous mutations in the insulin receptor gene[J]. Endocr J, 2013, 60(1): 107-112.
38 Xin BZ, Puffenberger EG, Turben S, et al. Homozygous frameshift mutation in TMCO1 causes a syndrome with craniofacial dysmorphism, skeletal ano-malies, and mental retardation[J]. Proc Natl Acad Sci U S A, 2010, 107(1): 258-263.
39 苗芬, 姚敏, 郑红. 遗传性牙龈纤维瘤发病机制的实验研究[J]. 实用医学杂志, 2019, 35(3): 388-391.
Miao F, Yao M, Zheng H. The study of pathogenic mechanism in hereditary gingival fibromatosis[J]. J Pract Med, 2019, 35(3): 388-391.
40 Xie CQ, Feng H, Zhong L, et al. Proliferative ability and accumulation of cancer stem cells in oral submucous fibrosis epithelium[J]. Oral Dis, 2020. doi:10.1111/odi.13347 .
doi: 10.1111/odi.13347
41 Xiong Y, Liu LQ, Qiu Y, et al. microRNA-29a inhi-bits growth, migration and invasion of melanoma A375 cells in vitro by directly targeting BMI1[J]. Cell Physiol Biochem, 2018, 50(1): 385-397.
42 高炜炜, 杨静, 朱于非, 等. 外显子组测序筛查遗传性牙龈纤维瘤的致病基因[J]. 上海交通大学学报(医学版), 2014, 34(12): 1721-1726.
Gao WW, Yang J, Zhu YF, et al. Screening pathogenic genes of hereditary gingival fibromatosis by exome sequencing[J]. J Shanghai Jiao Tong Univ (Med Sci), 2014, 34(12): 1721-1726.
[1] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[2] 夏溦瑶,罗岩坤,贾仲林. Pierre Robin序列征的精准诊断和遗传病因学研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 287-292.
[3] 盛南宁,王珏,南欣荣. 性别决定基因盒9在口腔鳞状细胞癌作用机制和治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 314-320.
[4] 王婧妍,秦满,王欣. Axenfeld-Rieger综合征的口腔颌面部临床特点及相关成对同源结构域转录因子2基因突变的致病机制研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 224-229.
[5] 郭思敏,陈婷. 常染色体显性钙化不全型釉质发育不全相关基因序列相似性83蛋白质家族成员H及其突变的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 600-606.
[6] 赵曼竹,宋锦璘. 时钟基因在牙齿发育中表达分布与调控机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 380-385.
[7] 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440.
[8] 雷彬,陈柯. 牙本质发育不良Ⅰ型及其分型治疗[J]. 国际口腔医学杂志, 2022, 49(3): 332-336.
[9] 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248.
[10] 孙嘉琳,林岩松,石冰,贾仲林. 5种常见综合征型唇腭裂遗传学研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 718-724.
[11] 柴国超,张素欣. 涎腺导管癌PI3K/AKT/mTOR信号通路中高频突变基因的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 731-736.
[12] 钱颖,龚佳幸,俞梦飞,刘宇,魏栋,朱子羽,陆科杰,王慧明. 从分子生物学角度对成釉细胞瘤诊断及治疗的考量[J]. 国际口腔医学杂志, 2021, 48(5): 570-578.
[13] 邓诗勇,宫苹,谭震. 脑和肌肉芳香烃受体核转运样蛋白1基因调控口腔及全身骨代谢的作用[J]. 国际口腔医学杂志, 2021, 48(2): 198-204.
[14] 张敏,万浩元. 种植体周围炎药物治疗与激光治疗的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 463-470.
[15] 魏中武,黄谢山,陈灼庚. 浓缩生长因子在口腔临床中的应用及研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 235-243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .