国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (2): 186-194.doi: 10.7518/gjkq.2023035

• 综述 • 上一篇    下一篇

开髓洞型对患牙根管治疗术后抗折性能影响的研究进展

汪牡丹(),宋东哲,黄定明()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院牙体牙髓病科 成都 610041
  • 收稿日期:2022-09-16 修回日期:2022-12-02 出版日期:2023-03-01 发布日期:2023-03-14
  • 通讯作者: 黄定明
  • 作者简介:汪牡丹,硕士,Email:1490600215@qq.com
  • 基金资助:
    国家自然科学基金(81771063);四川省重点研发项目(2021YFS0031)

Research progress on fracture resistance of endodontically treated teeth with different endodontic access cavities

Wang Mudan(),Song Dongzhe,Huang Dingming.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2022-09-16 Revised:2022-12-02 Online:2023-03-01 Published:2023-03-14
  • Contact: Dingming. Huang
  • Supported by:
    National Natural Science Foundation of China(81771063);The Key Research and Deve-lopment Program of Sichuan Province(2021YFS0031)

摘要:

根管治疗术是目前治疗牙髓根尖周疾病最常用且有效的手段之一。根管治疗过程会导致牙体组织损失,可能会降低患牙的抗折性。开髓洞型的设计与冠部牙体组织的磨除量密切相关。如何在保证根管治疗的有效开展下进行微创开髓,减少冠部牙体组织损失,以提高术后患牙的抗折性能,是本领域的研究热点。与强调直线入路的传统开髓洞型相比,以保守开髓洞型为代表的微创开髓洞型能否增强患牙的抗折性存在争议。本文从不同开髓洞型设计要点、根管治疗术后患牙抗折性能的研究现状入手,对相关研究进行文献回顾和综述。综合研究结果,可以认为微创开髓洞型减少了冠部牙体组织损失量,降低了应力集中;但过分微创的开髓洞型未能实现患牙抗折性能的提升,可能是因为微创设计破坏了直线通路所致。本文为微创开髓洞型在根管治疗中的应用提供了新思路,设计新的微创开髓洞型以兼顾冠部牙体组织的保存与直线通路的建立,或许是未来的研究方向。

关键词: 根管治疗, 开髓洞型, 微创, 抗折性能

Abstract:

Root canal therapy is one of the most common and effective methods for treating pulp and periapical disea-ses. The loss of dental tissue during treatment may reduce the fracture resistance of endodontically treated teeth. The design of endodontic access cavities is closely related to the preservation of crown dental tissue. Performing minimally invasive access under the condition of ensuring the effect of root canal therapy to reduce the loss of dental tissue and improve the fracture resistance of endodontically treated teeth has become a research hotspot. Whether minimally invasive access, which is represented by conservative endodontic cavities, can enhance the fracture resistance of endodontically treated teeth compared with the traditional endodontic cavity with linear approach is controversial. This review intends to start with the design points of endodontic access cavities and the status of the research on the fracture resistance of endodontically treated teeth with different endodontic access cavities. We reviewed correlational studies to provide fresh ideas for the application of minimally invasive access in root canal therapy. Studies confirmed that minimally invasive access can reduce the loss of crown dental tissue and stress concentration. However, an excessively minimally invasive access cannot improve the fracture resistance of endodontically treated teeth likely because the minimally invasive design disrupts the linear approach. Designing a new minimally invasive access to account for the preservation of crown dental tissue and the establishment of linear approach may be a future research direction.

Key words: root canal therapy, endodontic access cavity, minimally invasive, fracture resistance

中图分类号: 

  • R 781.05

表 1

开髓洞型(以三根管上颌第一磨牙为例)"

开髓洞型示意图(远中面)示意图(??面)设计要点优势不足

传统开髓洞型(TEC/

TradAC/TRD)

揭尽髓室顶,建立器械进入根管的直线通路视野清晰,技术敏感性低,可操作性强,感染控制好,并发症少,临床效果确切,临床应用广泛牙体组织损失量大,折裂风险大

保守开髓洞型(CEC/

ConsAC/CON)

从中央窝开髓,必要时扩展洞型以探查根管口,保存部分髓室顶牙体组织损失量小操作视野小,技术敏感性高,可操作性差,感染控制效果不确切,能否提高抗折性存在争议
将根分叉水平的根管中心和髓室底水平的根管口中心连接并延伸到??面,包围形成的多面体
超保守/忍者开髓洞型(UEC/UltraAC/NEC)在中央窝磨出极小洞型,没有进一步扩展,仅满足器械能够进入根管的基本需求牙体组织损失量极小操作视野极小,技术敏感性极高,器械分离风险大,感染控制差,能否提高抗折性存在争议
根管口导向/桁架开髓洞型(DDC/TREC/TUS/TrecAC)磨除根管口到??面的投影通路的牙体组织,预备出器械进入根管的通路,在通路中间留下未改变结构的桁架牙体组织损失量极小操作视野极小,技术敏感性极高,器械分离风险大,感染控制差,能否提高抗折性存在争议
改良开髓洞型(MEC)在传统开髓洞型基础上保留了部分髓室顶牙体组织损失量小操作视野小,技术敏感性高,感染控制有待研究,能否提高抗折性存在争议

直线微创开髓洞型

(SMIAC)

从中央窝开髓,向根管口扩展洞型以探查根管口,保存部分髓室顶牙体组织损失量小,有限的直线入路(器械进入根管或根管冠段弯曲的部分直线入路)操作视野小,技术敏感性高,感染控制有待研究,临床技能要求高,能否提高抗折性有待研究
将根管最大弯曲点的根管中心和髓室底水平的根管口中心连接并延伸到??面,包围形成的多面体

表 2

不同开髓洞型的根管治疗术后患牙抗折性能"

研究方法优势不足研究对象开髓洞型设计抗折性能结果c
理论力学a

有限元

分析

基线水平一致,可重复性好,不可控性小,结果误差小,指导临床研究不能完全模拟临床,未考虑应力疲劳,不能解决断裂问题上颌中切牙[26]TEC、MIAMIA>TEC
下颌第一磨牙[27]TEC、MIAMIA>TEC
下颌第一磨牙[28]TEC、MIAMIA>TEC
上颌第一磨牙[15]TEC、CECCEC>TEC
上颌第一前磨牙[8]

TEC、TREC、

SMIAC

SMIAC=TREC>TEC
下颌第一磨牙[22]TradAC、ConsAC、SMIACSMIAC=ConsAC>TradAC
下颌第一磨牙[14]TRD、CON、TUS随着开髓洞型减小,颈部应力增大而根部应力减小

扩展有

限元分

基线水平一致,可重复性好,不可控性小,结果误差小,指导临床研究,允许裂纹自动产生和扩展不能完全模拟临床,未考虑应力疲劳上颌第一磨牙[16]TEC、CEC、MECCEC>MEC>TEC
下颌第一前磨牙(严重弯曲“h”形根管)[21]

TEC、CEC、

MCEC

MCEC=CEC>TEC

威布尔

分析

基线水平一致,可重复性好,不可控性小,结果误差小,指导临床研究,预测给定压力下的累积失效率(应力疲劳)和折裂概率不能完全模拟临床上颌第一磨牙[7]TEC、CECCEC>TEC
实验力学b接近临床真实情况样本量较小,基线一致性差,可重复性差,不可控性大,结果误差大上颌切牙、下颌前磨牙、下颌磨牙[36]TEC、CECCEC>TEC
下颌磨牙[30]TEC、CECCEC>TEC
上下颌前磨牙、上下颌磨牙[13]TEC、CEC、NECNEC=CEC>TEC
下颌第一磨牙、下颌第二磨牙[9]TradAC、ConsAC、TrecACTrecAC=ConsAC>TradAC
上颌前磨牙[34]TEC、UECUEC=TEC
第一前磨牙[35]TEC、CECCEC=TEC
上颌第一磨牙[33]TEC、CECCEC=TEC
上颌第一磨牙、上颌第二磨牙[17]TAC、CACCAC=TAC
上颌磨牙[32]TEC、CECCEC=TEC
下颌第一磨牙[10]TradAC、UltraACUltraAC=TradAC
下颌第一磨牙、下颌第二磨牙[20]TEC、CEC、TRECTREC=CEC=TEC
下颌磨牙[18]TEC、UECUEC=TEC

表 3

根管治疗术后患牙载荷方式"

研究方法研究对象载荷方式示意图
理论力学a上颌中切牙与牙体长轴呈45°,将100 N载荷施加到舌侧切1/3与中1/3交界处[26]
下颌中切牙缺乏相关实验
上颌第一前磨牙

模拟垂直咀嚼力:沿牙体长轴将250 N载荷施加到中央窝[8]

模拟倾斜咀嚼力:与牙体长轴成45°,将250 N荷载施加到腭尖的颊平面上[8]

下颌第一前磨牙600 N载荷施加到颊尖和远中窝颊侧[21]
上颌第一磨牙模拟最大咀嚼力:800 N载荷施加到颌面4个区域[7,16]

模拟正常咀嚼力:250 N载荷施加到中央窝[15]

模拟最大咀嚼力:800 N载荷施加到??面5个区域[15]

模拟侧向咀嚼力:与牙体长轴呈45°,将225 N载荷施加到2个区域[15]

下颌第一磨牙分布式载荷:100 N载荷施加到整个咬合面[28]

模拟垂直咀嚼力:250 N载荷施加于中央窝[14,27]

模拟侧向咀嚼力:与牙体长轴呈45°,将250 N载荷施加于颊尖舌斜面[14,27]

模拟正常咀嚼力:250 N载荷施加到中央窝[22]

模拟最大咀嚼力:800 N载荷施加到颌面5个区域(中央窝、近中边缘嵴、远中边缘嵴、近颊尖颊斜面及远颊尖颊斜面)[22]

模拟侧向咀嚼力:与牙体长轴呈45°,将225 N载荷施加到2个区域(近颊尖颊斜面与远颊尖颊斜面)[22]

实验力学b切牙、前磨牙、磨牙[9-10,13,17-18,20,30,32-36]

载荷器械:球型不锈钢头(直径2~6 mm);

载荷区域:腭沟(中切牙)或中央窝(前磨牙或磨牙);

载荷方向:与牙体长轴成一定的角度的斜向载荷(中切牙135°、前磨牙30°、磨牙30°);

载荷速度:0.5~1 mm·min-1

载荷性质:静态压缩力,逐步下降25%;

载荷结果:离体牙发生断裂

1 周学东, 陈智, 岳林. 牙体牙髓病学[M]. 5版. 北京: 人民卫生出版, 2020.
Zhou XD, Chen Z, Yue L. Prosthodontics[M]. 5th ed. Beijing: People’s Medical Publishing House, 2020.
2 Liao WC, Chen CH, Pan YH, et al. Vertical root fracture in non-endodontically and endodontically treated teeth: current understanding and future challenge[J]. J Pers Med, 2021, 11(12): 1375.
3 Gutmann J. Minimally invasive dentistry (Endodontics)[J]. J Conserv Dent, 2013, 16(4): 282.
4 Gluskin AH, Peters CI, Peters OA. Minimally invasive endodontics: challenging prevailing paradigms[J]. Br Dent J, 2014, 216(6): 347-353.
5 Shabbir J, Zehra T, Najmi N, et al. Access cavity preparations: classification and literature review of traditional and minimally invasive endodontic access cavity designs[J]. J Endod, 2021, 47(8): 1229-1244.
6 Silva EJNL, Pinto KP, Ferreira CM, et al. Current status on minimal access cavity preparations: a critical analysis and a proposal for a universal nomenclature[J]. Int Endod J, 2020, 53(12): 1618-1635.
7 Wang Q, Liu YX, Wang ZH, et al. Effect of access cavities and canal enlargement on biomechanics of endodontically treated teeth: a finite element analysis[J]. J Endod, 2020, 46(10): 1501-1507.
8 高羽轩, 张岚, 周学东, 等. 直线通路微创开髓洞型对上颌第一前磨牙力学性能影响的有限元分析[J]. 中华口腔医学杂志, 2022, 57(1): 52-59.
Gao YX, Zhang L, Zhou XD, et al. Effect of straight-line minimally invasive access cavity on the mechanical properties of maxillary first premolars: a finite element analysis[J]. Chin J Stomatol, 2022, 57(1): 52-59.
9 Santosh SS, Ballal S, Natanasabapathy V. Influence of minimally invasive access cavity designs on the fracture resistance of endodontically treated mandi-bular molars subjected to thermocycling and dynamic loading[J]. J Endod, 2021, 47(9): 1496-1500.
10 Silva EJNL, Lima CO, Barbosa AFA, et al. Preser-ving dentine in minimally invasive access cavities does not strengthen the fracture resistance of restored mandibular molars[J]. Int Endodontic J, 2021, 54(6): 966-974.
11 Patel S, Bhuva B, Bose R. Present status and future directions: vertical root fractures in root filled teeth[J]. Int Endod J, 2022, 55(): 804-826.
12 Silva EJNL, Versiani MA, Souza EM, et al. Minimally invasive access cavities: does size really matter[J]. Int Endod J, 2021, 54(2): 153-155.
13 Plotino G, Grande NM, Isufi A, et al. Fracture strength of endodontically treated teeth with diffe-rent access cavity designs[J]. J Endod, 2017, 43(6): 995-1000.
14 Saber SM, Hayaty DM, Nawar NN, et al. The effect of access cavity designs and sizes of root canal pre-parations on the biomechanical behavior of an en-dodontically treated mandibular first molar: a finite element analysis[J]. J Endod, 2020, 46(11): 1675-1681.
15 Jiang QZ, Huang YT, Tu XR, et al. Biomechanical properties of first maxillary molars with different endodontic cavities: a finite element analysis[J]. J Endod, 2018, 44(8): 1283-1288.
16 Zhang YY, Liu YX, She YH, et al. The effect of en-dodontic access cavities on fracture resistance of first maxillary molar using the extended finite element method[J]. J Endod, 2019, 45(3): 316-321.
17 Sabeti M, Kazem M, Dianat O, et al. Impact of access cavity design and root canal taper on fracture resistance of endodontically treated teeth: an ex vivo investigation[J]. J Endod, 2018, 44(9): 1402-1406.
18 Augusto CM, Barbosa AFA, Guimarães CC, et al. A laboratory study of the impact of ultraconservative access cavities and minimal root canal tapers on the ability to shape canals in extracted mandibular molars and their fracture resistance[J]. Int Endod J, 2020, 53(11): 1516-1529.
19 Neelakantan P, Khan K, Hei Ng GP, et al. Does the orifice-directed dentin conservation access design debride pulp chamber and mesial root canal systems of mandibular molars similar to a traditional access design[J]. J Endod, 2018, 44(2): 274-279.
20 Corsentino G, Pedullà E, Castelli L, et al. Influence of access cavity preparation and remaining tooth substance on fracture strength of endodontically treated teeth[J]. J Endod, 2018, 44(9): 1416-1421.
21 Liu YX, Liu H, Fan B. Influence of cavity designs on fracture behavior of a mandibular first premolar with a severely curved h-shaped canal[J]. J Endod, 2021, 47(6): 1000-1006.
22 Fu YJ, Zhang L, Gao Y, et al. A comparison of vo-lume of tissue removed and biomechanical analysis of different access cavity designs in 2-rooted mandibular first molars: a multisample 3-dimensional finite element analysis[J]. J Endod, 2022, 48(3): 362-369.
23 陈新民, 赵云凤. 口腔生物力学[M]. 北京: 科学出版社, 2010.
Chen XM, Zhao YF. Dental biomechanics[M]. Beijing: Science Press, 2010.
24 Welch-Phillips A, Gibbons D, Ahern DP, et al. What is finite element analysis[J]. Clin Spine Surg, 2020, 33(8): 323-324.
25 Kim SY, Kim BS, Kim H, et al. Occlusal stress distribution and remaining crack propagation of a cracked tooth treated with different materials and designs: 3D finite element analysis[J]. Dent Mater, 2021, 37(4): 731-740.
26 刘子嫣, 赵凌, 杨丽媛, 等. 开髓方式与全冠修复对上颌中切牙应力分布影响的三维有限元分析[J]. 华西口腔医学杂志, 2019, 37(6): 642-647.
Liu ZY, Zhao L, Yang LY, et al. Three-dimensional finite element analysis of different endodontic access methods and full crown restoration in the ma-xillary central incisor[J]. West China J Stomatol, 2019, 37(6): 642-647.
27 Yuan KY, Niu CG, Xie Q, et al. Comparative evaluation of the impact of minimally invasive preparation vs. conventional straight-line preparation on tooth biomechanics: a finite element analysis[J]. Eur J Oral Sci, 2016, 124(6): 591-596.
28 Jalali P, Allen C, Meyer C, et al. Stress distribution in a tooth treated through minimally invasive access compared to one treated through traditional access: a finite element analysis study[J]. J Conserv Dent, 2018, 21(5): 505.
29 Wan BY, Shahmoradi M, Zhang ZP, et al. Modelling of stress distribution and fracture in dental occlusal fissures[J]. Sci Rep, 2019, 9(1): 4682.
30 Lai H, Lin X, Zhang Y, et al. Effect of different en-dodontic access preparations on the biomechanical behavior of lithium disilicate and resin nanoceramic onlay restorations: an in vitro and 3D finite element analysis study[J]. J Prosthet Dent, 2022: S0022-3913(22)00006-3.
31 Assif D, Nissan J, Gafni Y, et al. Assessment of the resistance to fracture of endodontically treated molars restored with amalgam[J]. J Prosthet Dent, 2003, 89(5): 462-465.
32 Moore B, Verdelis K, Kishen A, et al. Impacts of contracted endodontic cavities on instrumentation efficacy and biomechanical responses in maxillary molars[J]. J Endod, 2016, 42(12): 1779-1783.
33 Rover G, Belladonna FG, Bortoluzzi EA, et al. Influence of access cavity design on root canal detection, instrumentation efficacy, and fracture resistance assessed in maxillary molars[J]. J Endod, 2017, 43(10): 1657-1662.
34 Silva AA, Belladonna FG, Rover G, et al. Does ultraconservative access affect the efficacy of root canal treatment and the fracture resistance of two-roo-ted maxillary premolars[J]. Int Endod J, 2020, 53(2): 265-275.
35 Xia J, Wang WD, Li ZM, et al. Impacts of contrac-ted endodontic cavities compared to traditional en-dodontic cavities in premolars[J]. BMC Oral Health, 2020, 20(1): 250.
36 Krishan R, Paqué F, Ossareh A, et al. Impacts of conservative endodontic cavity on root canal instrumentation efficacy and resistance to fracture assessed in incisors, premolars, and molars[J]. J Endod, 2014, 40(8): 1160-1166.
37 Silva EJNL, Rover G, Belladonna FG, et al. Impact of contracted endodontic cavities on fracture resistance of endodontically treated teeth: a systematic review of in vitro studies[J]. Clin Oral Investig, 2018, 22(1): 109-118.
[1] 陆磊,王鑫,康泽标,谢富强. 计算机辅助导航手术在复杂颌面部骨折中的应用新进展[J]. 国际口腔医学杂志, 2023, 50(6): 696-703.
[2] 高宇天,苏勤. 酸性氧化电位水在根管治疗中的研究与应用[J]. 国际口腔医学杂志, 2023, 50(4): 401-406.
[3] 汤芝伟,高莺. 靶向牙髓显微外科技术的应用与进展[J]. 国际口腔医学杂志, 2022, 49(6): 678-683.
[4] 王璐璇,侯本祥. 根管内氢氧化钙残留对根管治疗的影响[J]. 国际口腔医学杂志, 2022, 49(3): 367-372.
[5] 戢晓,景钫淇,李雅,薛晶. 根管预备顺序的数据模拟优化研究[J]. 国际口腔医学杂志, 2022, 49(1): 37-47.
[6] 何蓉,刘学军,周宇琨. 光子引导的光声流效应在根管荡洗中应用的系统评价[J]. 国际口腔医学杂志, 2021, 48(6): 644-655.
[7] 邢桂琪,郭林溪,苏勤. 根管治疗后疾病的综合评估和治疗决策[J]. 国际口腔医学杂志, 2021, 48(5): 579-584.
[8] 刘昱晨,田敏,牛丽娜,方明. 粘接固定桥存留率的影响因素及提高对策[J]. 国际口腔医学杂志, 2021, 48(5): 585-591.
[9] 彭玮琪,高原,徐欣. 髓腔通路设计的微创理念及其研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 433-438.
[10] 胡文杰. 牙槽嵴保存术的临床实施问题探讨[J]. 国际口腔医学杂志, 2021, 48(3): 249-259.
[11] 李米雪子,张琛. 椅旁计算机辅助设计/计算机辅助制作髓腔固位冠修复根管治疗后磨牙的临床考量[J]. 国际口腔医学杂志, 2021, 48(3): 274-279.
[12] 季梦真,漆美瑶,杜珂芯,全淑琪,张煜强,郑庆华. 开髓洞型对全冠修复后隐裂牙抗力影响的三维有限元研究[J]. 国际口腔医学杂志, 2021, 48(1): 41-49.
[13] 谭凯璇,李帆,张利娟,李姗姗,卢洁,张颖,杨芳. 根管再治疗并发皮下气肿1例[J]. 国际口腔医学杂志, 2020, 47(5): 563-566.
[14] 石海涛,黄金霞,潘剑. 内镜技术在上颌窦异物取出术中的应用进展[J]. 国际口腔医学杂志, 2020, 47(4): 452-457.
[15] 唐蓓,赵文俊,王虎,郑广宁,游梦. 根管超填导致下牙槽神经损伤2例[J]. 国际口腔医学杂志, 2020, 47(3): 293-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .