国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (1): 10-18.doi: 10.7518/gjkq.2023017

• 牙周专栏 • 上一篇    下一篇

静电纺丝纳米纤维在牙周再生中的应用

杨梦瑶1(),高现灵2,邓淑丽1()   

  1. 1.浙江大学医学院附属口腔医院牙体牙髓科 浙江大学口腔医学院 浙江省口腔疾病临床医学研究中心 浙江省口腔生物医学研究重点实验室 浙江大学癌症研究院 杭州 310006
    2.中山大学附属口腔医院牙体牙髓科 广东省口腔医学重点实验室 广州 510055
  • 收稿日期:2022-05-16 修回日期:2022-09-28 出版日期:2023-01-01 发布日期:2023-01-09
  • 通讯作者: 邓淑丽
  • 作者简介:杨梦瑶,医师,硕士,Email:7519031@zju.edu.cn
  • 基金资助:
    国家自然科学基金(82001096);浙江省“尖兵”“领雁”研发攻关计划(2022C03060)

Application of electrospun nanofibers in periodontal regeneration

Yang Mengyao1(),Gao Xianling2,Deng Shuli1()   

  1. 1.Dept. of Cariology and Endodontics, Stomatological Hospital, School of Stomatology, Zhejiang University School of Me-dicine & Clinical Research Center for Oral Diseases of Zhejiang Province & Key Laboratory of Oral Biomedical Research of Zhejiang Province & Cancer Center of Zhejiang University, Hangzhou 310006, China
    2.Dept. of Cariology and Endodontics, Guanghua Hospital of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2022-05-16 Revised:2022-09-28 Online:2023-01-01 Published:2023-01-09
  • Contact: Shuli Deng
  • Supported by:
    National Natural Science Foundation of China(82001096);Research and Development Plan of Zhejiang Province’s “Top Soldiers” and “Leading Geese”(2022C03060)

摘要:

静电纺丝技术通过高压电场制备纳米纤维,这类材料具有优良的生物相容性、生物降解性;同时具有高孔隙率和高比表面积,可模拟天然细胞外基质的结构,促进细胞增殖和分化;通过负载无机粒子、药物等活性物质可优化材料的生物性能。因此,静电纺丝纳米纤维已广泛应用于骨、软骨、神经、皮肤等组织再生,也是牙周组织再生研究中的热门材料。本文简要阐述了静电纺丝纳米纤维的制备过程,并从基质成分、生物活性和结构方面介绍其在牙周组织再生中的应用,旨在为其进一步研究和开发提供参考。

关键词: 静电纺丝, 纳米纤维, 牙周再生, 生物活性, 微观结构

Abstract:

Nanofibers are prepared by electrospinning technique through a high voltage electric field. These materials have good biocompatibility and biodegradability. Simultaneously, materials with high porosity and high specific surface area can simulate the structure of the natural extracellular matrix and thus promote cell proliferation and differentiation. The biological properties of materials can be optimized by loading inorganic particles, drugs, and other active substances. Therefore, electrospinning nanofibers have been widely used in the regeneration of bone, cartilage, nerve, skin, and other tissues, and are also popular materials in periodontal tissue regeneration. Hence, this review briefly describes the preparation process of electrospun nanofibers, and introduces their application in periodontal tissue regeneration from the aspects of matrix composition, biological activity, and structure, aiming to provide a reference for its further research and development.

Key words: electrospinning, nanofibers, periodontal regeneration, biological activity, microstructure

中图分类号: 

  • R 781.4

表 1

优化生物活性的各种静电纺丝纳米纤维"

种类活性成分优点缺点或需改善之处
生物陶瓷材料nHAp促进成骨混纺:需探索合适的比例;涂层:需控制涂层厚度、增加结合强度
β-TCP改善纤维力学性能,促进成骨需提高孔隙率、促进细胞黏附
药物需改善缓释效果、提高药效和生物活性
抗菌药物甲硝唑、氨苄西林、阿莫西林、盐酸四环素、盐酸强力霉素、替尼唑抑制牙周病菌
非甾体抗炎药阿司匹林、布洛芬、吡罗西康抑制炎症反应
植物提取物姜黄素、芹黄素、绿茶多酚、毛紫檀等抗炎、抗氧化
其他辛伐他汀、地塞米松、雷尼酸锶调节骨再生,促进成骨
金属及金属氧化物AgNPs抗菌需确认安全性
AuNPs促进成骨骨诱导性能较弱
Sr促进成骨需提高生物活性
CaO促进成骨降低力学性能
ZnO促进成骨、抗菌需确认安全性
胺基化的ZrO2增加强度、生物相容性佳需确认安全性
蛋白
生长因子BMPs促进成骨需改善缓释曲线、提高生物活性
PDGF、TGF、IGF促进创伤愈合及成骨
VEGF促进血管再生
功能蛋白AMPs抗菌需提高生物活性
FN促进细胞识别需改善包被方法
OCN促进矿化需体内试验验证效果
新型碳纳米材料GO改善力学性能、促进成骨体内不能降解
MWCNTs提高纤维的强度和韧性、骨传导性
1 Pihlstrom BL, Michalowicz BS, Johnson NW. Perio-dontal diseases[J]. Lancet, 2005, 366(9499): 1809-1820.
2 Needleman I, Worthington HV, Giedrys-Leeper E, et al. WITHDRAWN: guided tissue regeneration for periodontal infra-bony defects[J]. Cochrane Database Syst Rev, 2019, 5: CD001724.
3 Shin YM, Yang HS, Chun HJ. Directional cell migration guide for improved tissue regeneration[J]. Adv Exp Med Biol, 2020, 1249: 131-140.
4 Abdelaziz D, Hefnawy A, Al-Wakeel E, et al. New biodegradable nanoparticles-in-nanofibers based me-mbranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity[J]. J Adv Res, 2021, 28: 51-62.
5 Chen GP, Kawazoe N. Porous scaffolds for regene-ration of cartilage, bone and osteochondral tissue[J]. Adv Exp Med Biol, 2018, 1058: 171-191.
6 Chen CC, Lee SY, Teng NC, et al. In vitro and in vivo studies of hydrophilic electrospun PLA95/β-TCP membranes for guided tissue regeneration (GTR) applications[J]. Nanomaterials (Basel), 2019, 9(4): E599.
7 Yao CH, Yang SP, Chen YS, et al. Electrospun poly(γ-glutamic acid)/β-tricalcium phosphate composite fibrous mats for bone regeneration[J]. Polymers (Basel), 2019, 11(2): E227.
8 Yang MY, Gao XL, Shen ZS, et al. Gelatin-assisted conglutination of aligned polycaprolactone nanofilms into a multilayered fibre-guiding scaffold for periodontal ligament regeneration[J]. RSC Adv, 2018, 9(1): 507-518.
9 Martinelli NM, Ribeiro MJG, Ricci R, et al. In vitro osteogenesis stimulation via nano-hydroxyapatite/carbon nanotube thin films on biomedical stainless steel[J]. Materials (Basel), 2018, 11(9): E1555.
10 Xue JJ, Wu T, Dai YQ, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chem Rev, 2019, 119(8): 5298-5415.
11 Esbah Tabaei PS, Asadian M, Ghobeira R, et al. Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue enginee-ring[J]. Carbohydr Polym, 2021, 253: 117211.
12 He P, Zhong Q, Ge Y, et al. Dual drug loaded coa-xial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection[J]. Mater Sci Eng C Mater Biol Appl, 2018, 90: 549-556.
13 Abdollahi Boraei SB, Nourmohammadi J, Bakhshandeh B, et al. Capability of core-sheath polyvinyl alcohol-polycaprolactone emulsion electrospun nanofibrous scaffolds in releasing strontium ranelate for bone regeneration[J]. Biomed Mater, 2021, 16(2): 025009.
14 Chen HW, Lin MF. Characterization, biocompatibility, and optimization of electrospun SF/PCL/CS composite nanofibers[J]. Polymers(Basel), 2020, 12(7): E1439.
15 Ren K, Wang Y, Sun T, et al. Electrospun PCL/gelatin composite nanofiber structures for effective gui-ded bone regeneration membranes[J]. Mater Sci Eng C Mater Biol Appl, 2017, 78: 324-332.
16 Nejati-Koshki K, Pilehvar-Soltanahmadi Y, Alizadeh E, et al. Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative me-dicine[J]. Drug Dev Ind Pharm, 2017, 43(12): 1978-1988.
17 Shen RZ, Xu WH, Xue YX, et al. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup2): 419-430.
18 Zhang HL, Wang J, Wang KR, et al. A bilayered PLGA/multiwall carbon nanotubes/bacterial cellulose composite membrane for tissue regeneration of maxillary canine periodontal bone defects[J]. Mater Lett, 2018, 212: 118-121.
19 Jia J, Liu G, Guo ZX, et al. Preparation and characterization of soluble eggshell membrane protein/PLGA electrospun nanofibers for guided tissue regeneration membrane[J]. J Nanomater, 2012, 2012: 1-7.
20 Ao CH, Niu Y, Zhang XM, et al. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering[J]. Int J Biol Macromol, 2017, 97: 568-573.
21 Miszuk JM, Xu T, Yao QQ, et al. Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation[J]. Appl Mater Today, 2018, 10: 194-202.
22 Niu XL, Wang LF, Xu MJ, et al. Electrospun polyamide-6/chitosan nanofibers reinforced nano-hydroxyapatite/polyamide-6 composite bilayered mem-branes for guided bone regeneration[J]. Carbohydr Polym, 2021, 260: 117769.
23 Lai GJ, Shalumon KT, Chen JP. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds[J]. Int J Nanomedicine, 2015, 10: 567-584.
24 Zhang S, Jiang GJ, Prabhakaran MP, et al. Evaluation of electrospun biomimetic substrate surface-decorated with nanohydroxyapatite precipitation for osteoblasts behavior[J]. Mater Sci Eng C Mater Biol Appl, 2017, 79: 687-696.
25 Ezati M, Safavipour H, Houshmand B, et al. Deve-lopment of a PCL/gelatin/chitosan/β-TCP electrospun composite for guided bone regeneration[J]. Prog Biomater, 2018, 7(3): 225-237.
26 Masoudi Rad M, Nouri Khorasani S, Ghasemi-Mobarakeh L, et al. Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application[J]. Mater Sci Eng C Mater Biol Appl, 2017, 80: 75-87.
27 Reise M, Wyrwa R, Müller U, et al. Release of me-tronidazole from electrospun poly(L-lactide-co-D/L-lactide) fibers for local periodontitis treatment[J]. Dent Mater, 2012, 28(2): 179-188.
28 Ho MH, Chang HC, Chang YC, et al. PDGF-metronidazole-encapsulated nanofibrous functional layers on collagen membrane promote alveolar ridge regeneration[J]. Int J Nanomedicine, 2017, 12: 5525-5535.
29 Ho MH, Claudia JC, Tai WC, et al. The treatment response of barrier membrane with amoxicillin-loaded nanofibers in experimental periodontitis[J]. J Perio-dontol, 2021, 92(6): 886-895.
30 Ranjbar-Mohammadi M, Zamani M, Prabhakaran MP, et al. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2016, 58: 521-531.
31 Jia LN, Zhang X, Xu HY, et al. Development of a doxycycline hydrochloride-loaded electrospun nanofibrous membrane for GTR/GBR applications[J]. J Nanomater, 2016, 2016: 1-10.
32 Khan G, Yadav SK, Patel RR, et al. Tinidazole functionalized homogeneous electrospun chitosan/poly (ε-caprolactone) hybrid nanofiber membrane: Deve-lopment, optimization and its clinical implications[J]. Int J Biol Macromol, 2017, 103: 1311-1326.
33 Ghavimi MA, Bani Shahabadi A, Jarolmasjed S, et al. Nanofibrous asymmetric collagen/curcumin mem-brane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration[J]. Sci Rep, 2020, 10(1): 18200.
34 Batool F, Morand DN, Thomas L, et al. Synthesis of a novel electrospun polycaprolactone scaffold functionalized with ibuprofen for periodontal regeneration: an in vitro and in vivo study[J]. Materials (Basel), 2018, 11(4): E580
35 Farooq A, Yar M, Khan AS, et al. Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2015, 56: 104-113.
36 Costa Salles TH, Volpe-Zanutto F, de Oliveira Sousa IM, et al. Electrospun PCL-based nanofibers Arrabidaea chica Verlot-Pterodon pubescens Benth loaded: synergic effect in fibroblast formation[J]. Biomed Mater, 2020, 15(6): 065001.
37 Raja IS, Preeth DR, Vedhanayagam M, et al. Polyphenols-loaded electrospun nanofibers in bone tissue engineering and regeneration[J]. Biomater Res, 2021, 25(1): 29.
38 Malekpour Z, Akbari V, Varshosaz J, et al. Preparation and characterization of poly(lactic-co-glycolic acid) nanofibers containing simvastatin coated with hyaluronic acid for using in periodontal tissue engineering[J]. Biotechnol Prog, 2021, 37(6): e3195.
39 Murali VP, Fujiwara T, Gallop C, et al. Modified electrospun chitosan membranes for controlled release of simvastatin[J]. Int J Pharm, 2020, 584: 119438.
40 Wang SF, Wu YC, Cheng YC, et al. The development of polylactic acid/multi-wall carbon nanotubes/polyethylene glycol scaffolds for bone tissue rege-neration application[J]. Polymers (Basel), 2021, 13(11): 1740.
41 Federico S, Pitarresi G, Palumbo FS, et al. Hyaluronan alkyl derivatives-based electrospun membranes for potential guided bone regeneration: fabrication, characterization and in vitro osteoinductive properties[J]. Colloids Surf B Biointerfaces, 2021, 197: 111438.
42 Ko SW, Lee JY, Rezk AI, et al. In-situ cellulose-framework templates mediated monodispersed silver nanoparticles via facile UV-light photocatalytic activity for anti-microbial functionalization[J]. Carbohydr Polym, 2021, 269: 118255.
43 Niu CG, Yuan KY, Ma R, et al. Gold nanoparticles promote osteogenic differentiation of human perio-dontal ligament stem cells via the p38 MAPK signaling pathway[J]. Mol Med Rep, 2017, 16(4): 4879-4886.
44 Jadhav K, Hr R, Deshpande S, et al. Phytosynthesis of gold nanoparticles: characterization, biocompatibility, and evaluation of its osteoinductive potential for application in implant dentistry[J]. Mater Sci Eng C Mater Biol Appl, 2018, 93: 664-670.
45 Terranova L, Dragusin DM, Mallet R, et al. Repair of calvarial bone defects in mice using electrospun polystyrene scaffolds combined with β-TCP or gold nanoparticles[J]. Micron, 2017, 93: 29-37.
46 Tsai SW, Hsu YW, Pan WL, et al. The effect of strontium-substituted hydroxyapatite nanofibrous matrix on osteoblast proliferation and differentiation[J]. Membranes (Basel), 2021, 11(8): 624.
47 Münchow EA, Pankajakshan D, Albuquerque MT, et al. Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering[J]. Clin Oral Investig, 2016, 20(8): 1921-1933.
48 Nasajpour A, Ansari S, Rinoldi C, et al. A multifunctional polymeric periodontal membrane with osteogenic and antibacterial characteristics[J]. Adv Funct Mater, 2018, 28(3): 1703437.
49 Ekambaram R, Paraman V, Raja L, et al. Design and development of electrospun SPEEK incorporated with aminated zirconia and curcumin nanofibers for periodontal regeneration[J]. J Mech Behav Biomed Mater, 2021, 123: 104796.
50 Boda SK, Almoshari Y, Wang HJ, et al. Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration[J]. Acta Biomater, 2019, 85: 282-293.
51 da Silva TN, Gonçalves RP, Rocha CL, et al. Controlling burst effect with PLA/PVA coaxial electrospun scaffolds loaded with BMP-2 for bone guided regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2019, 97: 602-612.
52 Cheng G, Ma X, Li JM, et al. Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering[J]. Int J Pharm, 2018, 547(1/2): 656-666.
53 Yin LH, Yang SH, He MM, et al. Physicochemical and biological characteristics of BMP-2/IGF-1-loa-ded three-dimensional coaxial electrospun fibrous membranes for bone defect repair[J]. J Mater Sci Mater Med, 2017, 28(6): 94.
54 Wang C, Lu WW, Wang M. Multifunctional fibrous scaffolds for bone regeneration with enhanced vascularization[J]. J Mater Chem B, 2020, 8(4): 636-647.
55 Zigdon-Giladi H, Khutaba A, Elimelech R, et al. VEGF release from a polymeric nanofiber scaffold for improved angiogenesis[J]. J Biomed Mater Res A, 2017, 105(10): 2712-2721.
56 Campos DM, Gritsch K, Salles V, et al. Surface entrapment of fibronectin on electrospun PLGA scaffolds for periodontal tissue engineering[J]. Biores Open Access, 2014, 3(3): 117-126.
57 Lee JH, Park JH, El-Fiqi A, et al. Biointerface control of electrospun fiber scaffolds for bone regeneration: engineered protein link to mineralized surface[J]. Acta Biomater, 2014, 10(6): 2750-2761.
58 Boda SK, Fischer NG, Ye Z, et al. Dual oral tissue adhesive nanofiber membranes for pH-responsive delivery of antimicrobial peptides[J]. Biomacromo-lecules, 2020, 21(12): 4945-4961.
59 Wu JN, Zheng A, Liu Y, et al. Enhanced bone rege-neration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide[J]. Int J Nanome-dicine, 2019, 14: 733-751.
60 Su W, Wang ZY, Jiang J, et al. Promoting tendon to bone integration using graphene oxide-doped electrospun poly(lactic-co-glycolic acid) nanofibrous membrane[J]. Int J Nanomedicine, 2019, 14: 1835-1847.
61 Zhou TF, Li G, Lin SY, et al. Electrospun poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/graphene oxide scaffold: enhanced properties and promoted in vivo bone repair in rats[J]. ACS Appl Mater Interfaces, 2017, 9(49): 42589-42600.
62 Svyntkivska M, Makowski T, Piorkowska E, et al. Modification of polylactide nonwovens with carbon nanotubes and ladder poly(silsesquioxane)[J]. Molecules, 2021, 26(5): 1353.
63 Wang SF, Wu YC, Cheng YC, et al. The development of polylactic acid/multi-wall carbon nanotubes/polyethylene glycol scaffolds for bone tissue rege-neration application[J]. Polymers (Basel), 2021, 13(11): 1740.
64 Kennedy KM, Bhaw-Luximon A, Jhurry D. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: implications for scaffold design and performance[J]. Acta Biomater, 2017, 50: 41-55.
65 Lowery JL, Datta N, Rutledge GC. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats[J]. Biomaterials, 2010, 31(3): 491-504.
66 Zhong SP, Zhang YZ, Lim CT. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review[J]. Tissue Eng Part B Rev, 2012, 18(2): 77-87.
67 Xie J, Shen HQ, Yuan GY, et al. The effects of alignment and diameter of electrospun fibers on the cellular behaviors and osteogenesis of BMSCs[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111787.
68 Chen G, Chen JL, Yang B, et al. Combination of aligned PLGA/gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration[J]. Biomaterials, 2015, 52: 56-70.
69 Jiang WL, Li L, Zhang D, et al. Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium[J]. Acta Biomater, 2015, 25: 240-252.
[1] 李伟光,吴亚菲,郭淑娟. 无机纳米粒子在牙周病诊疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 724-730.
[2] 王路明,曹潇,仵琳悦,李蕴聪,雷波,牛林. 掺锌生物活性玻璃纳米颗粒对复合树脂力学性能影响的实验研究[J]. 国际口腔医学杂志, 2022, 49(4): 404-411.
[3] 张曦丹,孙吉宇,付馨靓,甘雪琦. 介孔硅酸钙纳米材料在牙体牙髓及颅颌面修复领域的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 476-482.
[4] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[5] 巩靖蕾,黄艳梅,王军. 多相支架在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2021, 48(5): 563-569.
[6] 汪是琦,常雅琴,陈斌,谭葆春,泥艳红. 植骨术与植骨联用屏障膜在牙周再生治疗中临床疗效对比的系统评价与Meta分析[J]. 国际口腔医学杂志, 2020, 47(6): 644-651.
[7] 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145.
[8] 吴晓楠,马宁,侯建霞. 不同干细胞来源外泌体在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 146-151.
[9] 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94.
[10] 程国平,丁一,郭淑娟. 静电纺丝纤维作为牙周药物传递系统的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 565-570.
[11] 汪洋, 申玉芹, 于文雯, 孙新华. 改良介孔生物活性玻璃在颌面部骨缺损修复中的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 32-35.
[12] 黄紫华, 武诗语, 麦穗. 促牙本质再矿化的生物活性树脂研究进展[J]. 国际口腔医学杂志, 2017, 44(4): 471-476.
[13] 杨红 董强. 组织工程细胞片在牙周组织再生中的作用[J]. 国际口腔医学杂志, 2014, 41(3): 324-328.
[14] 汪池 朱慧勇. 基因修饰的纳米纤维支架的研究进展[J]. 国际口腔医学杂志, 2013, 40(1): 64-67.
[15] 蒋丽综述 廖运茂,李伟审校. 微观结构和组成对牙科全瓷材料光学性能的影响[J]. 国际口腔医学杂志, 2010, 37(6): 699-702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .