国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (1): 32-36.doi: 10.7518/gjkq.2023010

• 牙周专栏 • 上一篇    下一篇

牙周病中固有淋巴细胞的研究进展

成益凡(),秦旭,姜鸣,朱光勋()   

  1. 华中科技大学同济医学院附属同济医院口腔科 武汉 430030
  • 收稿日期:2022-02-25 修回日期:2022-08-02 出版日期:2023-01-01 发布日期:2023-01-09
  • 通讯作者: 朱光勋
  • 作者简介:成益凡,硕士,Email:1578157248@qq.com
  • 基金资助:
    国家自然科学基金(81300883);湖北省自然科学基金(2019CFB688)

Research progress on innate lymphoid cells in periodontal diseases

Cheng Yifan(),Qin Xu,Jiang Ming,Zhu Guang-xun.()   

  1. Dept. of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techno-logy, Wuhan 430030, China
  • Received:2022-02-25 Revised:2022-08-02 Online:2023-01-01 Published:2023-01-09
  • Contact: Guang-xun. Zhu
  • Supported by:
    National Natural Science Foundation of China(81300883);Natural Science Foundation of Hubei Province of China(2019CFB688)

摘要:

固有淋巴细胞(ILCs)是固有免疫细胞的一员,也是连接固有免疫和适应性免疫的重要桥梁。它主要分布于黏膜屏障部位,参与病原体入侵的防御、组织损伤的修复、上皮屏障的维持和淋巴器官的形成,在肺、胃肠道组织中被广泛研究。根据其表达的转录因子、分泌的细胞因子和功能特点,可将ILCs分为3型:Ⅰ型ILCs、Ⅱ型ILCs和Ⅲ型ILCs;进一步可分为6个细胞亚群:自然杀伤细胞、ILC1、ILC2、ILC3、淋巴组织诱导细胞和调节性固有淋巴细胞。ILCs存在于健康和炎症牙周组织中,不同的ILCs亚型在牙周病的发生和发展过程中发挥着不同的作用,因此ILCs有可能成为牙周病治疗的新靶点。本文就ILCs的分类和功能,牙周组织中ILCs的特征,以及ILCs在牙周病中的作用进行综述。

关键词: 固有淋巴细胞, 牙周病, 细胞因子, 免疫反应

Abstract:

Innate lymphoid cells (ILCs) are a member of innate immune cells, which bridge the innate and adaptive immunities. ILCs are mainly distributed at mucosal barriers and participate in defense against pathogens, the repair of tissue, the maintenance of tissue integrity, and the formation of the lymphoid organ. They have been studied extensively in lungs and gastrointestinal tissues. On the basis of the expression of transcription factors, the secretion of cytokines, and the characteristics of functions, ILCs can be categorized into three subtypes: groups Ⅰ, Ⅱ and Ⅲ. With the constant deepening of the studies on ILCs, ILCs can now be classified into six subsets: natural killer cells, ILC1, ILC2, ILC3, lymphoid-tissue inducers, and regulatory innate lymphoid cells. ILCs are found in healthy and inflammatory periodontal tissue and that different subtypes play distinct roles in the occurrence and development of periodontal diseases. Therefore, these cells offer new strategies for the therapy of periodontal diseases. This article will review the classification and functions of ILCs, the characteristics of ILCs in periodontal tissue, and the roles of ILCs in periodontal diseases.

Key words: innate lymphoid cells, periodontal diseases, cytokines, immune response

中图分类号: 

  • R 781.4
1 Diefenbach A, Colonna M, Koyasu S. Development, differentiation, and diversity of innate lymphoid cells[J]. Immunity, 2014, 41(3): 354-365.
2 Constantinides MG, McDonald BD, Verhoef PA, et al. A committed precursor to innate lymphoid cells[J]. Nature, 2014, 508(7496): 397-401.
3 Zhou YG, Xu XX, Tian ZG, et al. “multi-omics”analyses of the development and function of natural killer cells[J]. Front Immunol, 2017, 8: 1095.
4 Wang S, Xia PY, Chen Y, et al. Regulatory innate lymphoid cells control innate intestinal inflammation[J]. Cell, 2017, 171(1): 201-216.e18.
5 Kim CH, Hashimoto-Hill S, Kim M. Migration and tissue tropism of innate lymphoid cells[J]. Trends Immunol, 2016, 37(1): 68-79.
6 Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on[J]. Cell, 2018, 174(5): 1054-1066.
7 Mjösberg J, Spits H. Human innate lymphoid cells[J]. J Allergy Clin Immunol, 2016, 138(5): 1265-1276.
8 Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis[J]. Nat Rev Microbiol, 2010, 8(7): 481-490.
9 Qin X, Hoda MN, Susin C, et al. Increased innate lymphoid cells in periodontal tissue of the murine model of periodontitis: the role of AMP-activated protein kinase and relevance for the human condition[J]. Front Immunol, 2017, 8: 922.
10 Li C, Liu J, Pan J, et al. ILC1s and ILC3s exhibit inflammatory phenotype in periodontal ligament of pe-riodontitis patients[J]. Front Immunol, 2021, 12: 708678.
11 Parisi L, Bassani B, Tremolati M, et al. Natural killer cells in the orchestration of chronic inflammatory diseases[J]. J Immunol Res, 2017, 2017: 4218254.
12 Huang YF, Guo LY, Qiu J, et al. IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells[J]. Nat Immunol, 2015, 16(2): 161-169.
13 Klose CS, Kiss EA, Schwierzeck V, et al. A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells[J]. Nature, 2013, 494(7436): 261-265.
14 Montaldo E, Juelke K, Romagnani C. Group 3 innate lymphoid cells (ILC3s): origin, differentiation, and plasticity in humans and mice[J]. Eur J Immunol, 2015, 45(8): 2171-2182.
15 Daussy C, Faure F, Mayol K, et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow[J]. J Exp Med, 2014, 211(3): 563-577.
16 Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells[J]. Science, 2011, 331(6013): 44-49.
17 Seillet C, Huntington ND, Gangatirkar P, et al. Differential requirement for Nfil3 during NK cell development[J]. J Immunol, 2014, 192(6): 2667-2676.
18 Mackley EC, Houston S, Marriott CL, et al. Corrigendum: CCR7-dependent trafficking of RORγ+ ILCs creates a unique microenvironment within mucosal dr-aining lymph nodes[J]. Nat Commun, 2016, 7: 11186.
19 Yagi R, Zhong C, Northrup DL, et al. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells[J]. Immunity, 2014, 40(3): 378-388.
20 Kim HY, Umetsu DT, Dekruyff RH. Innate lymphoid cells in asthma: will they take your breath away[J]. Eur J Immunol, 2016, 46(4): 795-806.
21 Monticelli LA, Osborne LC, Noti M, et al. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions[J]. Proc Natl Acad Sci U S A, 2015, 112(34): 10762-10767.
22 Spits H, Artis D, Colonna M, et al. Innate lymphoid cells: a proposal for uniform nomenclature[J]. Nat Rev Immunol, 2013, 13(2): 145-149.
23 Cording S, Medvedovic J, Aychek T, et al. Innate lymphoid cells in defense, immunopathology and immunotherapy[J]. Nat Immunol, 2016, 17(7): 755-757.
24 Goldberg R, Prescott N, Lord GM, et al. The unusual suspects: innate lymphoid cells as novel therapeutic targets in IBD[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(5): 271-283.
25 Dutzan N, Konkel JE, Greenwell-Wild T, et al. Characterization of the human immune cell network at the gingival barrier[J]. Mucosal Immunol, 2016, 9(5): 1163-1172.
26 Kindstedt E, Koskinen Holm C, Palmqvist P, et al. Innate lymphoid cells are present in gingivitis and periodontitis[J]. J Periodontol, 2019, 90(2): 200-207.
27 Brown JL, Campbell L, Malcolm J, et al. Enrichment of innate lymphoid cell populations in gingival tissue[J]. J Dent Res, 2018, 97(12): 1399-1405.
28 Seidel A, Seidel CL, Weider M, et al. Influence of natural killer cells and natural killer T cells on periodontal disease: a systematic review of the current literature[J]. Int J Mol Sci, 2020, 21(24): E9766.
29 Wilensky A, Chaushu S, Shapira L. The role of natural killer cells in periodontitis[J]. Periodontol 2000, 2015, 69(1): 128-141.
30 Powell N, Walker AW, Stolarczyk E, et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells[J]. Immunity, 2012, 37(4): 674-684.
31 Li YY, Wang XJ, Su YL, et al. Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s[J]. Acta Pharmacol Sin, 2021, 10(2): 377-396.
[1] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[2] 李伟光,吴亚菲,郭淑娟. 无机纳米粒子在牙周病诊疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 724-730.
[3] 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592.
[4] 李归平,秦旭,朱光勋. 腺苷酸活化蛋白激酶在牙周病发生发展中的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 343-348.
[5] 穆新月,刘树泰. 动机性访谈在牙周病患者临床管理中的应用进展[J]. 国际口腔医学杂志, 2022, 49(1): 94-99.
[6] 白皓亮,杨禾,赵蕾. 牙周病风险评估及预后判断工具的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 696-702.
[7] 周万航,李嫣斐,许日聪,万启军. 牙周非手术治疗对慢性肾脏病危险因素及全身炎症水平影响的Meta分析[J]. 国际口腔医学杂志, 2021, 48(5): 528-535.
[8] 沈忆芬,刘超,汤颖,顾永春. 电子烟暴露对牙周健康影响的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 347-353.
[9] 秦小茹,刘梦圆. 牙周病和心肌梗死发生风险相关性队列研究的Meta分析[J]. 国际口腔医学杂志, 2021, 48(2): 165-172.
[10] 郏乐铭,贾小玥,杨燃,周学东,徐欣. 益生菌制剂在牙周病防治中的应用进展[J]. 国际口腔医学杂志, 2020, 47(5): 515-521.
[11] 张琳琳,杜毅. 畸形舌侧沟的治疗进展[J]. 国际口腔医学杂志, 2020, 47(4): 458-462.
[12] 刘琳,周婕妤,吴亚菲,赵蕾. 益生菌生态调节在牙周病防治中的应用[J]. 国际口腔医学杂志, 2020, 47(2): 131-137.
[13] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
[14] 文书琼,郭君怡,戴文晓,王迪侃,王智. 白色念珠菌影响口腔黏膜癌变的机制进展[J]. 国际口腔医学杂志, 2019, 46(6): 705-710.
[15] 程国平,丁一,郭淑娟. 静电纺丝纤维作为牙周药物传递系统的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 565-570.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .