国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (5): 556-560.doi: 10.7518/gjkq.2022093

• 综述 • 上一篇    下一篇

舍格伦综合征唾液腺中自噬现象的研究进展

叶玉琳(),江莉婷,高益鸣()   

  1. 上海交通大学医学院附属瑞金医院口腔科 上海交通大学口腔医学院 上海 200025
  • 收稿日期:2022-01-14 修回日期:2022-06-23 出版日期:2022-09-01 发布日期:2022-09-16
  • 通讯作者: 高益鸣
  • 作者简介:叶玉琳,住院医师,硕士,Email:792121694@qq.com
  • 基金资助:
    国家自然科学基金(81900975)

Role of autophagy in salivary glands of Sjögren’s syndrome

Ye Yulin(),Jiang Liting,Gao Yiming.()   

  1. Dept. of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200025, China
  • Received:2022-01-14 Revised:2022-06-23 Online:2022-09-01 Published:2022-09-16
  • Contact: Yiming. Gao
  • Supported by:
    National Natural Science Foundation of China(81900975)

摘要:

原发性舍格伦综合征(pSS)是一种以外分泌腺大量破坏引起口干、眼干等症状并可累及全身多系统为特征的自身免疫性疾病。自噬参与机体固有和适应性免疫反应,自噬异常可能打破免疫系统稳态,参与pSS的发生发展。本文从自噬与正常唾液腺的稳态与应激,自噬相关蛋白在pSS腺体的异常表达,pSS中自噬与固有免疫及适应性免疫,自噬与pSS的药物治疗4个方面,对自噬与pSS发生发展的关系作一综述,为深入研究自噬在pSS中的作用机制,预防和治疗pSS提供新的方向与思路。

关键词: 自噬, 舍格伦综合征, 唾液腺, 免疫

Abstract:

Primary Sjögren ’s syndrome is an autoimmune disease characterized by the destruction of exocrine glands, causing dry mouth, dry eyes, and multiple systemic manifestations. Autophagy is involved in the innate and adaptive immune responses. Autophagy dysregulation may break the immune homeostasis and participate in the incidence and deve-lopment of pSS. Here, we reviewed the relationship between autophagy and pSS from four aspects: the role of autophagy in the homeostasis and stress responses of salivary glands, the abnormal expression of autophagy-related proteins (ATG) in the pSS glands, the autophagy in innate immunity and adaptive immunity in pSS, and drug therapy aiming at autophagy of pSS. We provided new directions and ideas for further study on the mechanism of autophagy in pSS and ultimately contribute to prevention and treatment of pSS.

Key words: autophagy, Sjögren ’ s syndrome, salivary gland, immunity

中图分类号: 

  • R 392
1 Mizushima N, Levine B. Autophagy in human di-seases[J]. N Engl J Med, 2020, 383(16): 1564-1576.
2 Wu DJ, Adamopoulos IE. Autophagy and autoimmunity[J]. Clin Immunol Orlando Fla, 2017, 176: 55-62.
3 Brito-Zerón P, Baldini C, Bootsma H, et al. Sjögren syndrome[J]. Nat Rev Dis Primers, 2016, 2: 16047.
4 Mavragani CP, Moutsopoulos HM. Sjögren ’ s synd-rome[J]. Annu Rev Pathol, 2014, 9: 273-285.
5 Morgan-Bathke M, Lin HH, Chibly AM, et al. Deletion of ATG5 shows a role of autophagy in salivary homeostatic control[J]. J Dent Res, 2013, 92(10): 911-917.
6 Morgan-Bathke M, Lin HH, Ann DK, et al. The role of autophagy in salivary gland homeostasis and s-tress responses[J]. J Dent Res, 2015, 94(8): 1035-1040.
7 Morgan-Bathke M, Hill GA, Harris ZI, et al. Autophagy correlates with maintenance of salivary g-land function following radiation[J]. Sci Rep, 2014, 4: 5206.
8 Lin HH, Lin SM, Chung Y, et al. Dynamic involvement of ATG5 in cellular stress responses[J]. Cell Death Dis, 2014, 5: e1478.
9 Alessandri C, Ciccia F, Priori R, et al. CD4 T lymphocyte autophagy is upregulated in the salivary glands of primary Sjögren’s syndrome patients and correlates with focus score and disease activity[J]. Arthritis Res Ther, 2017, 19(1): 178.
10 Colafrancesco S, Vomero M, Iannizzotto V, et al. Autophagy occurs in lymphocytes infiltrating Sjö‑ gren’s syndrome minor salivary glands and correlates with histological severity of salivary gland lesions[J]. Arthritis Res Ther, 2020, 22(1): 238.
11 侯佳奇, 吴香香, 潘云翠, 等. IFN-γ, caspase-3, LC3-Ⅱ在原发性干燥综合征唇腺中的表达及其相关性[J]. 临床与病理杂志, 2019, 39(4): 769-775.
Hou JQ, Wu XX, Pan YC, et al. Expression and correlation of IFN-γ, caspase-3, LC3-Ⅱ in labial glands of primary Sjögren ’ s syndrome[J]. J Clin Pathol Res, 2019, 39(4): 769-775.
12 Du ZH, Ding C, Zhang Q, et al. Stem cells  from exfoliated deciduous teeth alleviate hyposalivation cau-sed by Sjögren syndrome[J]. Oral Dis, 2019, 25(6): 1530-1544.
13 Byun YS, Lee HJ, Shin S, et al. Elevation of auto-phagy markers in Sjögren syndrome dry eye[J]. Sci Rep, 2017, 7(1): 17280.
14 Lee HJ, Shin S, Yoon SG, et al. The effect of chloroquine on the development of dry eye in Sjögren syndrome animal model[J]. Invest Ophthalmol Vis Sci, 2019, 60(12): 3708-3716.
15 Barrera MJ, Aguilera S, Castro I, et al. Tofacitinib counteracts IL-6 overexpression induced by deficient autophagy: implications in Sjögren’s syndrome[J]. Rheumatol Oxf Engl, 2021, 60(4): 1951-1962.
16 Li BH, Wang FJ, Schall N, et al. Rescue of autophagy and lysosome defects in salivary glands of MRL/lpr mice by a therapeutic phosphopeptide[J]. J Autoimmun, 2018, 90: 132-145.
17 Voynova E, Lefebvre F, Qadri A, et al. Correction of autophagy impairment inhibits pathology in the NOD.H-2h4 mouse model of primary Sjögren’s syndrome[J]. J Autoimmun, 2020, 108: 102418.
18 Nakatogawa H. Mechanisms governing autophagosome biogenesis[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 439-458.
19 Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword[J]. Science, 2004, 306(5698): 990-995.
20 Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)[J]. Autophagy, 2021, 17(1): 1-382.
21 Deretic V, Jiang SY, Dupont N. Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation[J]. Trends Cell Biol, 2012, 22(8): 397-406.
22 New J, Thomas SM. Autophagy-dependent secretion: mechanism, factors secreted, and disease implications[J]. Autophagy, 2019, 15(10): 1682-1693.
23 Yin H, Wu HJ, Chen YJ, et al. The therapeutic and pathogenic role of autophagy in autoimmune disea-ses[J]. Front Immunol, 2018, 9: 1512.
24 Seror R, Ravaud P, Bowman SJ, et al. EULAR Sjogren’s syndrome disease activity index: development of a consensus systemic disease activity index for primary Sjogren’s syndrome[J]. Ann Rheum Dis, 2010, 69(6): 1103-1109.
25 Vitali C, Palombi G, Baldini C, et al. Sjögren’s syndrome disease damage index and disease activity index: scoring systems for the assessment of disease damage and disease activity in Sjögren’s syndrome, derived from an analysis of a cohort of Italian patients[J]. Arthritis Rheum, 2007, 56(7): 2223-2231.
26 Katsiougiannis S, Tenta R, Skopouli FN. Endoplasmic reticulum stress causes autophagy and apoptosis leading to cellular redistribution of the autoantigens Ro/Sjögren’s syndrome-related antigen A (SSA) and La/SSB in salivary gland epithelial cells[J]. Clin Exp Immunol, 2015, 181(2): 244-252.
27 Byun YS, Lee HJ, Shin S, et al. Tear ATG5 as a potential novel biomarker in the diagnosis of Sjögren syndrome[J]. Diagnostics (Basel), 2021, 11(1): 71.
28 Rizzo C, Grasso G, Destro Castaniti GM, et al. Primary Sjögren syndrome: focus on innate immune cells and inflammation[J]. Vaccines (Basel), 2020, 8(2): 272.
29 Christodoulou MI, Kapsogeorgou EK, Moutsopoulos HM. Characteristics of the minor salivary gland infiltrates in Sjögren’s syndrome[J]. J Autoimmun, 2010, 34(4): 400-407.
30 Wu MY, Lu JH. Autophagy and macrophage functions: inflammatory response and phagocytosis[J]. Cells, 2019, 9(1): 70.
31 Ozaki Y, Ito T, Son Y, et al. Decrease of blood dendritic cells and increase of tissue-infiltrating dendri-tic cells are involved in the induction of Sjögren’s syndrome but not in the maintenance[J]. Clin Exp Immunol, 2010, 159(3): 315-326.
32 Lee HK, Mattei LM, Steinberg BE, et al. In vivo requirement for Atg5 in antigen presentation by dendritic cells[J]. Immunity, 2010, 32(2): 227-239.
33 Ge Y, Huang M, Yao YM. Autophagy and proinflammatory cytokines: interactions and clinical implications[J]. Cytokine Growth Factor Rev, 2018, 43: 38-46.
34 Metur SP, Klionsky DJ. Adaptive immunity at the crossroads of autophagy and metabolism[J]. Cell Mol Immunol, 2021, 18(5): 1096-1105.
35 Nirk EL, Reggiori F, Mauthe M. Hydroxychloroquine in rheumatic autoimmune disorders and beyond[J]. EMBO Mol Med, 2020, 12(8): e12476.
36 Fu L, Wu W, Sun X, et al. Glucocorticoids enhanced osteoclast autophagy through the PI3K/Akt/mTOR signaling pathway[J]. Calcif Tissue Int, 2020, 107(1): 60-71.
[1] 刘世一, 陈中, 张素欣. 程序性死亡受体/配体免疫治疗策略在人乳头瘤病毒阳性头颈部鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 21-27.
[2] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[3] 杨静,柳登高. 内镜下激光碎石术治疗唾液腺结石病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 704-710.
[4] 徐智博,孟秀萍. 粪肠球菌逃逸宿主免疫防御机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 613-617.
[5] 赵玲帆, 周杨, 叶鑫鑫, 张强. 肾移植术后腮腺低分化黏液表皮样癌1例[J]. 国际口腔医学杂志, 2023, 50(4): 419-422.
[6] 杨晓宇,袁泉. 纤维蛋白原血管外沉积在黏膜免疫中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 457-462.
[7] 成益凡,秦旭,姜鸣,朱光勋. 牙周病中固有淋巴细胞的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 32-36.
[8] 罗婉逸,韩居熺,周学东,彭显,郑欣. 具核梭杆菌促进结直肠癌发生发展机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 52-60.
[9] 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592.
[10] 李洪芳,陈中,张素欣. 免疫检查点抑制剂联合放射治疗在头颈部鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 614-620.
[11] 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440.
[12] 陈思婷,钟雄,孟文霞. Nod样受体家族嘌呤结构域3炎症小体在口腔黏膜病中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 471-475.
[13] 李归平,秦旭,朱光勋. 腺苷酸活化蛋白激酶在牙周病发生发展中的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 343-348.
[14] 方苓力,谭玺,叶雨丝,黄兰,何瑶. 颞下颌关节退行性变早期髁突软骨细胞行为改变的实验研究[J]. 国际口腔医学杂志, 2021, 48(4): 417-425.
[15] 马平川,李春洁,李龙江. 唾液腺导管癌的诊疗研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 459-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .